Những câu hỏi liên quan
Dưa Hấu
Xem chi tiết
Kiệt Nguyễn
22 tháng 5 2020 lúc 13:31

Đặt \(x=a+b+2c;y=2a+b+c;z=a+b+3c\left(x,y,z>0\right)\)

Từ đó tính được: \(\hept{\begin{cases}a=z+y-2x\\b=5x-y-3z\\c=z-x\end{cases}}\)

Lúc đó \(A=\frac{4\left(z+y-2x\right)}{x}+\frac{\left(5x-y-3z\right)+3\left(z-x\right)}{y}-\frac{8\left(z-x\right)}{z}\)

\(=\frac{4z+4y}{x}-8+\frac{2x}{y}-1+\frac{8x}{z}-8\)

\(=\left(\frac{4y}{x}+\frac{2x}{y}\right)+\left(\frac{4z}{x}+\frac{8x}{z}\right)-17\)

\(\ge2\sqrt{\frac{4y}{x}.\frac{2x}{y}}+2\sqrt{\frac{4z}{x}.\frac{8x}{z}}-17=12\sqrt{2}-17\)(Theo BĐT Cô - si cho 2 số dương)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{4y}{x}=\frac{2x}{y}\\\frac{4z}{x}=\frac{8x}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\sqrt{2}\\z=x\sqrt{2}=2y\end{cases}}\Leftrightarrow\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}\)

Đặt \(\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}=k\left(k>0\right)\)thì \(\hept{\begin{cases}z=2k\\x=\sqrt{2}k\\y=k\end{cases}}\). Lúc đó \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\)

Vậy \(MinA=12\sqrt{2}-17\), đạt được khi \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\left(k>0\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Mai Thành Đạt
Xem chi tiết
poppy Trang
Xem chi tiết
Akai Haruma
4 tháng 1 2020 lúc 21:28

Lời giải:
Áp dụng BĐT Am-Gm và Cauchy-Schwarz:

\(P+4=\frac{3b+3c}{2a}+\frac{4a+3c}{3b}+\frac{12b-12c}{2a+3c}+4=\frac{3b}{2a}+\frac{3c}{2a}+\frac{2a}{3b}+\frac{2a}{3b}+\frac{3c}{3b}+\frac{12b+8a}{2a+3c}\)

\(=(\frac{3b}{2a}+\frac{2a}{3b})+(\frac{3c}{2a}+\frac{3c}{3b})+(\frac{2a}{3b}+\frac{2a}{2a})+\frac{4(3b+2a)}{2a+3c}-1\)

\(\geq 2\sqrt{\frac{3b}{2a}.\frac{2a}{3b}}+3c.\frac{4}{2a+3b}+2a.\frac{4}{3b+2a}+\frac{4(3b+2a)}{2a+3c}-1\)

\(=2+\frac{4(3c+2a)}{2a+3b}+\frac{4(3b+2a)}{2a+3c}-1\geq 2+2\sqrt{\frac{4(3c+2a)}{2a+3b}.\frac{4(3b+2a)}{2a+3c}}-1\)

\(=2+8-1=9\)

\(\Rightarrow P\geq 5\)

Vậy $P_{\min}=5$

Bình luận (0)
 Khách vãng lai đã xóa
like game
Xem chi tiết
IS
2 tháng 7 2020 lúc 22:48

Bìa này muốn làm cân 2 bước nha 

Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

nó được CM như sau

áp dụng BĐT cô si ta đc 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)

dấu = xảy ra khi x=y=z

Bình luận (0)
 Khách vãng lai đã xóa
IS
2 tháng 7 2020 lúc 22:53

Bước 2 ) Theo CM bước 1 . áp dụng ta đc

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

CM tương tự ta đc

\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)

cộng zế zới zế ta đc

\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)

\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)

=> MAx A=1 khi a=b=c=2

Bình luận (0)
 Khách vãng lai đã xóa
VN in my heart
Xem chi tiết
alibaba nguyễn
10 tháng 7 2017 lúc 13:54

Ta có:

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)

\(=\frac{1}{4}.2017=\frac{2017}{4}\)

Bình luận (0)
Nguyễn Thiều Công Thành
10 tháng 7 2017 lúc 14:08

đề thi vào lớp 10 năm nay của tỉnh thanh hóa

Bình luận (0)
Cù Nhật Hoàng
Xem chi tiết
Nguyễn Thị Mát
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Đặng Ngọc Quỳnh
23 tháng 5 2021 lúc 18:52

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

Bình luận (0)
 Khách vãng lai đã xóa
Trần Anh Thơ
Xem chi tiết
Trần Quốc Khanh
3 tháng 4 2020 lúc 20:22

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

Bình luận (0)
 Khách vãng lai đã xóa