giải pt:(2x+5)(x-4)=(x-5)(4-x)
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
giải pt: 12/x^2+2x+4 - 5/x^2+2x+5=2
Ta có \(\frac{12}{x^2+2x+4}-\frac{5}{x^2+2x+5}=2\)
<=>\(12\left(x^2+2x+5\right)-5\left(x^2+2x+4\right)=2\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow12x^2+24x+60-5x^2-10x-20=2x^4+8x^3+26x^2+36x+40\)
\(\Leftrightarrow7x^2+14x+40=2x^4+8x^3+26x^2+36x+40\)
\(\Leftrightarrow2x^4+8x^3+19x^2+22x=0\)
\(\Leftrightarrow x\left(2x^3+8x^2+19x+22\right)=0\)
\(\Leftrightarrow x\left(2x^3+4x^2+4x^2+8x+11x+22\right)=0\)
\(\Leftrightarrow x\left[2x^2\left(x+2\right)+4x\left(x+2\right)+11\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x^2+4x+11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy PT có nghiệm duy nhất S ={0 ; -2 } vì( \(2x^2+4x+11\ne0\))
giải pt (3-x)^4+(2-x)^4=(5-2x)^4
Đặt 3-x = a ; 2-x = b
=> 5-2x = a+b
pt <=> a^4+b^4 = (a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4
<=> a^4+4a^3b+6a^2b^2+4ab^3+b^4-a^4-b^4 = 0
<=> 4a^3b+6a^2b^2+4ab^3 = 0
<=> 2a^3b+3a^2b^2+2ab^3 = 0
<=> ab.(2a^2+3ab+2b^2) = 0
<=> ab=0 ( vì 2a^2+3ab+2b^2 > 0 )
<=> a=0 hoặc b=0
<=> 3-x=0 hoặc 2-x=0
<=> x=3 hoặc x=2
Vậy .............
Tk mk nha
Giải Pt
(2x+4)(x-3)-(x+2)(x-4)=x(x-5)
(x-2)*2 = (2x-4)(x+5)
* là dấu mũ nha
\(\left(2x+4\right)\left(x-3\right)-\left(x+2\right)\left(x-4\right)=x\left(x+5\right)\)
\(2\left(x+2\right)\left(x-3\right)-\left(x+2\right)\left(x-4\right)=x\left(x+5\right)\)
\(\left(x+2\right)\left(2x-6-x+4\right)=x\left(x+5\right)\)
\(\left(x+2\right)\left(x-2\right)-x^2-5x=0\)
\(x^2-2x+2x-4-x^2-5x=0\)
\(-5x-4=0\)
\(-5x=4\)
\(\Rightarrow\)\(x=\frac{-4}{5}\)
\(\left(x-2\right)^2=\left(2x-4\right)\left(x+5\right)\)
\(\left(x-2\right)^2-2\left(x-2\right)\left(x+5\right)=0\)
\(\left(x-2\right)\left(x-2-2x-10\right)=0\)
\(\left(x-2\right)\left(-x-12\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\-x-12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-12\end{cases}}}\)
Bạn tự kết luận 2 câu nhé
Giải pt: 4/x^2+2x-3=2x-5/x+3-2x/x-1
ĐKXĐ: \(x\notin\left\{-3;1\right\}\)
Ta có: \(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(\Leftrightarrow\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
Suy ra: \(\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)=4\)
\(\Leftrightarrow2x^2-2x-5x+5-2x^2-6x=4\)
\(\Leftrightarrow-13x+5=4\)
\(\Leftrightarrow-13x=4-5=-1\)
hay \(x=\frac{1}{13}\)(nhận)
Vậy: \(S=\left\{\frac{1}{13}\right\}\)
Giải pt: (x-3)(-2x+5)-2x(x-4)+(4x-5)(x-3)=(x-2)(x-1)-(x2-5x)
Giải hộ mình với: Giải pt
18(x+1)(x+2)(x+5)(2x+5)=(19/4)x^2
giải pt |2x+5| +|4-x|=|x+9|
\(\hept{\begin{cases}\left|2x+5\right|=2x+5\Leftrightarrow x\ge-\frac{5}{2}\\\left|2x+5\right|=-\left(2x+5\right)\Leftrightarrow x< -\frac{5}{2}\end{cases}}\)
\(\hept{\begin{cases}\left|4-x\right|=4-x\Leftrightarrow x\le4\\\left|4-x\right|=x-4\Leftrightarrow x>4\end{cases}}\)
\(\hept{\begin{cases}\left|x+9\right|=x+9\Leftrightarrow x\ge-9\\\left|x+9\right|=-\left(x+9\right)\Leftrightarrow x< -9\end{cases}}\)
(+) \(-\frac{5}{2}\le x\le4\) \(\left(-\frac{5}{2}>-9\right)\)
\(pt\Leftrightarrow2x+5+4-x=x+9\)
\(\Leftrightarrow0x=0\left(true\right)\)
(+) \(-9\le x< -\frac{5}{2}\) \(\left(-\frac{5}{2}< 4\right)\)
\(pt\Leftrightarrow-\left(2x+5\right)+4-x=x+9\)
\(\Leftrightarrow-2x-5+4-x=x+9\)
\(\Leftrightarrow-4x=10\Leftrightarrow x=-\frac{5}{2}\)( không thỏa mãn )
Vậy phương trình nhận mọi x trong khoảng \(-\frac{5}{2}\le x\le4\)làm nghiệm
Ta có |2x + 5| + |4 - x| = |x + 9|
=> \(\orbr{\begin{cases}\left|2x+5\right|+\left|4-x\right|=x+9\\\left|2x+5\right|+\left|4-x\right|=-x-9\end{cases}}\)
Khi |2x + 5| + |4 - x| = x + 9 (1)
Nếu x < -2,5
=> |2x + 5| = - (2x + 5) = -2x - 5
=> |4 - x| = 4 - x
=> (1) <=> -2x - 5 + 4 - x = x + 9
=> -2x - x - x = 9 - 4 + 5
=> - 4x = 10
=> x = -2,5 (loại)
Nếu \(-2,5\le x\le4\)
=> |2x + 5| = 2x + 5
|4 - x| = 4 - x
=> (1) <=> 2x + 5 + 4 - x = x + 9
=> 2x - x - x = 9 - 5 - 4
=> 0x = 0
=> x thỏa mãn với \(-2,5\le x\le4\)
Nếu x > 4
=> |2x + 5| = 2x + 5
|4 - x| = -4 + x
=> (1) <=> 2x + 5 - 4 + x = x + 9
=> 2x + x - x = 9 - 5 + 4
=> 2x = 8
=> x = 4 (loại)
Vậy khi |2x + 5| + |4 - x| = x + 9 thì \(-2,5\le x\le4\)
Khi |2x + 5| + |4 - x| = -x - 9
Nếu x < -2,5
=> |2x + 5| = - (2x + 5) = -2x - 5
=> |4 - x| = 4 - x
=> (1) <=> -2x - 5 + 4 - x = -x - 9
=> -2x - x + x = -9 - 4 + 5
=> - 2x = -8
=> x = 4 (loại)
Nếu \(-2,5\le x\le4\)
=> |2x + 5| = 2x + 5
|4 - x| = 4 - x
=> (1) <=> 2x + 5 + 4 - x = -x - 9
=> 2x - x + x = -9 - 5 - 4
=> 2x = -18
=> x = -9 (loại)
Nếu x > 4
=> |2x + 5| = 2x + 5
|4 - x| = -4 + x
=> (1) <=> 2x + 5 - 4 + x = - x - 9
=> 2x + x + x = 9 - 5 + 4
=> 4x = 8
=> x = 2 (loại)
Vậy khi |2x + 5| + |4 - x| = -x - 9 thì \(x\in\varnothing\)
Vậy \(-2,5\le x\le4\)
TH1:
\(x>0\Leftrightarrow\hept{\begin{cases}2x+5>5\\4-x>4\\x+9>9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}|2x-5|=2x-5\\|4-x|=4-x\\|x=9|=x+9\end{cases}}\)
\(\Leftrightarrow2x+5+4-x=x+9\)
\(\Leftrightarrow2x-x-x=9-4-5\)
\(\Leftrightarrow0x=0\)(thỏa mãn điều kiện);
vậy pt vô số nghiệm
TH2:
\(x< 0\Leftrightarrow\hept{\begin{cases}2x+5< 5\\4-x< 4\\x+9< 9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}|2x+5|=-\left(2x+5\right)=-2x-5\\|4-x|=-\left(4-x\right)=x-4\\|x+9|=-\left(x+9\right)=-x-9\end{cases}}\)
\(\Leftrightarrow-2x-5+x-4=-x-9\)
\(\Leftrightarrow-2x+x+x=4+5-9\)
\(\Leftrightarrow0x=0\)(thỏa mãn điều kiện);
vậy pt vô số nghiệm