Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
Nguyễn Thanh Hằng
6 tháng 2 2022 lúc 22:50

ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

\(A=\left(\dfrac{3\sqrt{x}}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{x+6\sqrt{x}+9}\)

\(=\left(\dfrac{3}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{\left(\sqrt{x}+3\right)^2}\)

\(=\dfrac{3\sqrt{x}+9-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}\)

\(=\dfrac{\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

Vậy...

Cô gái thất thường (Ánh...
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Trần Hương
Xem chi tiết
Hoàng Lê Bảo Ngọc
6 tháng 7 2016 lúc 22:40

Ta có \(B=\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}+\frac{1}{2}\)

Áp dụng bất đẳng thức Cosi được \(\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}\ge2\Rightarrow B\ge2+\frac{1}{2}=\frac{5}{2}\)

Dấu đẳng thức xảy ra <=> \(\sqrt{x}-1=2\Leftrightarrow x=9\)

Vậy Min B = \(\frac{5}{2}\Leftrightarrow x=9\)

Nguyễn Khánh Phương
Xem chi tiết
Ngo Anh Ngoc
Xem chi tiết
vũ tiền châu
15 tháng 8 2017 lúc 23:41

bài 2 là bài 21 trong nâng cao phát triển toán 9, chắc bạn có chứ

Nguyễn Quốc Gia Huy
16 tháng 8 2017 lúc 8:04

Bài 1: Ta có:

\(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}=5+\sqrt{13+x}\)

\(\Rightarrow x^2-5=\sqrt{13+x}\Rightarrow x^4-10x^2+25=13+x\Leftrightarrow x^4-10x^2-x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)

Pt này có 1 nghiệm x = 3 và 3 nghiệm nhỏ hơn 2.

Vì \(x>\sqrt{4}=2\)

Vậy x = 3.

Phan Văn Hiếu
16 tháng 8 2017 lúc 8:38

b2

\(\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}}=\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x\left(x+1\right)}}=\sqrt{\left(1+\frac{1}{x}-\frac{1}{x+1}\right)^2}=1+\frac{1}{x}-\frac{1}{x+1}\)

\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)

.....................................................................

\(\sqrt{1+\frac{1}{2013^2}+\frac{1}{2014^2}}=1+\frac{1}{2013}-\frac{1}{2014}\)

BT = 2012-1/2014

Cao Minh Dương
Xem chi tiết
Đoàn Minh Ngọc
Xem chi tiết
Ngọc Nguyễn Ánh
Xem chi tiết
Phan Văn Hiếu
27 tháng 7 2017 lúc 21:13

đkxđ \(x\ne1;x\ge0\)

\(P=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(P=\frac{1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(P=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x+\sqrt{x}+1-x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x+\sqrt{x}+2}{\left(\sqrt{x}\right)^3-1}\)

Ngọc Nguyễn Ánh
28 tháng 7 2017 lúc 10:28

bạn làm câu b được không ạ?