Giải giúp mk bài 13 với ạ!!
Bài 13: Tìm GTNN của P= \(\frac{x-3\sqrt{x}-2}{\sqrt{x}+1}\)
\(\left(\dfrac{3\sqrt{x}}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{x+6\sqrt{x}+9}\) với x>0; x khác 4
ai giải chi tiết giúp mk bài này với khó quá
ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
\(A=\left(\dfrac{3\sqrt{x}}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{x+6\sqrt{x}+9}\)
\(=\left(\dfrac{3}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{\left(\sqrt{x}+3\right)^2}\)
\(=\dfrac{3\sqrt{x}+9-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}\)
\(=\dfrac{\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
Vậy...
bài 1:
\(P=\frac{x^2-x}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{x-1}+\frac{2x-2}{x-1}\)
a) Rút gọn
b) tìm GTNN của P
c) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\)có giá trị nguyên
bài 2. \(N=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{2\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm x để N xác định
b) Tìm x để N đạt GTNN tìm GTNN đó
lm mí bài nì rối quá, ai giúp mk vs
Bài 1: Tính :
\(C=\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(D=\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
Bài 2 : Cho \(P=\left(\frac{1}{\sqrt{x}-1}+\frac{x-\sqrt{x}+6}{x+\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{x-\sqrt{x}-2}{x+\sqrt{x}+2}\right)\)
a, Rút gọn P
b, Tìm GTNN
c, Tìm x để \(P.\frac{x-1}{x^2+8x}< -2\)
A C giúp em bài này với ạ. Em cảm ơn
Cho x > 1
Tìm GTNN của
B = \(\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}-1}\)
Ta có \(B=\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}+\frac{1}{2}\)
Áp dụng bất đẳng thức Cosi được \(\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}\ge2\Rightarrow B\ge2+\frac{1}{2}=\frac{5}{2}\)
Dấu đẳng thức xảy ra <=> \(\sqrt{x}-1=2\Leftrightarrow x=9\)
Vậy Min B = \(\frac{5}{2}\Leftrightarrow x=9\)
Bài 1: Tìm GTLN và GTNN của
a) A= \(\frac{3}{1+2\sqrt{3-x^2}}\)
b) B= \(\sqrt{9+4x-x^2}\)
Bài 2: Tìm GTLN của
a) C= \(\sqrt{x}+x\)
b) C= \(x+\sqrt{3-x}\)
Bài 3: Tìm GTNN của
a) E= \(x-\sqrt{x-2015}\)
b) F= \(\sqrt{x^2-4x+4}+\sqrt{x^2+10x+25}\)
Mọi người giúp mình với. Mình cảm ơn trước ạ!
Bài 1 :
Tìm x biết x = \(\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}\)
Bài 2 : Tính
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2013^2}+\frac{1}{2014^2}}\)
bài 2 là bài 21 trong nâng cao phát triển toán 9, chắc bạn có chứ
Bài 1: Ta có:
\(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}=5+\sqrt{13+x}\)
\(\Rightarrow x^2-5=\sqrt{13+x}\Rightarrow x^4-10x^2+25=13+x\Leftrightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)
Pt này có 1 nghiệm x = 3 và 3 nghiệm nhỏ hơn 2.
Vì \(x>\sqrt{4}=2\)
Vậy x = 3.
b2
\(\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}}=\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x\left(x+1\right)}}=\sqrt{\left(1+\frac{1}{x}-\frac{1}{x+1}\right)^2}=1+\frac{1}{x}-\frac{1}{x+1}\)
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)
.....................................................................
\(\sqrt{1+\frac{1}{2013^2}+\frac{1}{2014^2}}=1+\frac{1}{2013}-\frac{1}{2014}\)
BT = 2012-1/2014
bài 2:
\(A=\frac{3}{\sqrt{x}+1}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{9}{x-\sqrt{x}-2}\)
TÌM x nguyên để biết A nhận giá trị nguyên
XIN CÁC BẠN GIÚP MK BÀI NÀY VỚI Ạ !
Bài 1 : Tìm GTNN
\(A=\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
Bài 2 : Giải phương trình
a) \(\sqrt{2+2x-x^2}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
b ) \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{9-\left(3x-1\right)^2}\)
Bài 2 : Tìm GTLN
\(P=\sqrt{x-5}+\sqrt{13-x}\)
Cho biểu thức:
11/ Cho biểu thức:
\(P=\frac{\sqrt{x}+1}{x-1}-\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a) rút gọn P
b) Tìm GTNN của biểu thức \(\frac{2}{P}+\sqrt{x}\)
giúp mk với, mk cần gấp ạ
đkxđ \(x\ne1;x\ge0\)
\(P=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+1-x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+2}{\left(\sqrt{x}\right)^3-1}\)