cho 3 số dương x,y,z thỏa mãn điều kiện\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=1\)
chứng minh rằng \(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\le1\)
cho 3 số dương x,y,z thỏa mãn điều kiện \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=1\) Chứng minh rằng
\(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\le1\)
Cho x, y, z là 3 số dương thỏa mãn: x+y+z=3. Chứng minh rằng:
\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+xz}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
ta có 3x + yz = x2 + xy + yz + zx = (x+y)(x+z)
do đó:
\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x\left(\sqrt{x^2+xy+yz+zx}-x\right)}{\left(\sqrt{x^2+xy+yz+zx}+x\right)\left(\sqrt{x^2+xy+yz+zx}-x\right)}\)
= \(\frac{x\left(\sqrt{\left(x+y\right)\left(x+z\right)}-x\right)}{xy+yz+zx}\le\frac{x\left(\frac{x+y+x+z}{2}-x\right)}{xy+yz+zx}\)\(\le\frac{x\left(y+z\right)}{2\left(xy+yz+zx\right)}\)
tương tự với 2 số hạng còn lại nên ta được: P\(\le\)1. đpcm
hi minh ket ban nhe
m.imgur.com/a/ls9dmpn
Cậu chịu khó đánh máy nhé ! Tớ dùng đt nên nhác phải đánh text lắm :(((
Cách mình ngắn hơn trên khá nhìu nha !!!!
Cho 3 số dương x, y, z thỏa mãn điều kiện : \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=1\) . Chứng minh rằng : \(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\)≤1
cho x;y;z là 3 số dương thỏa mãn x+y+z=3 .chứng minh rằng \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Áp dụng B.C.S ta có:
\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)
\(\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự cộng lại ta có dpcm.
Dấu = khi x=y=z=1
Cho ba số dương x, y, z thỏa mãn. Chứng minh rằng:
\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Đề bài thiếu điều kiện rồi :")))
thêm điều kiện đi rồi giải cho
Cho x,y,z là những số thực dương thỏa mãn : \(x+y+z\le1\)Chứng minh rằng:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)
\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)
\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)
\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)
Cho x,y,z là 3 số dương thỏa mãn x+y+z=3
Chứng minh rằng \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y
}{y+\sqrt{3y+zx
}}+\frac{z}{z+\sqrt{3z+xy}}\le1
\)
Các bạn giúp mình với :(((
(*) Xét BĐT \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\) với a ; b; c ;d > 0
BĐT <=> \(\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)
<=> \(ad-2\sqrt{abcd}+bc\ge0\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)
Dễ thấy BĐT cuối luôn đúng
Dấu '' = '' của BĐT xảy ra khi ad = bc <=> \(\frac{a}{c}=\frac{b}{d}\)
(*) ÁP dụng BĐT ta có
\(\sqrt{3x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+z\right)\left(y+x\right)}\ge\sqrt{xy}+\sqrt{xz}\)
=> \(\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Dấu '' = '' của BĐT xảy ra khi x/y = z/x
(*) CMTT với hai cái còn lại
Cộng Ba vế BĐT ta đc ĐPCM
Dấu '' = '' của BĐT xảy ra khi x = y = z = 1
Cho x, y là các số thực dương, z là số thực khác 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\). Chứng minh \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\)
Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)
Theo giả thiết, ta có:
theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)
Tương tự, ta có: \(y-z=\frac{zy}{x}\)
Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)
ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)
Thay (2) vào (1) ta thấy (2) luôn đúng
Suy ra ĐPCM
Vì \(x>0,y>0\Rightarrow\frac{1}{x}>0;\frac{1}{y}>0\)
mà \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{z}>0\Rightarrow z>0\)
Ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Leftrightarrow yz+zx-xy=0\)
\(\Leftrightarrow-z^2=-z^2+yz+zx-xy=-\left(x-z\right)\left(y-z\right)\)
\(\Leftrightarrow z^2=\left(x-z\right)\left(y-z\right)>0\)
\(\Rightarrow z=\sqrt{\left(x-z\right)\left(y-z\right)}\left(z>0\right)\)
Lại có: \(x+y=x-z+y-z+2z\)
\(=\left(x-z\right)+\left(y-z\right)+2\sqrt{\left(x-z\right)\left(y-z\right)}=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
Suy ra \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\) (ĐPCM)
Cho x,y,z > 0 thỏa mãn \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=1\)
Chứng minh : \(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\le1\)
Để ý: \(2=\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{z}{x}+\frac{x}{y}\right)\)
\(\ge2\sqrt{\frac{x}{z}}+2\sqrt{\frac{y}{x}}+2\sqrt{\frac{z}{y}}\)
Từ đó suy ra \(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\le1\)