Cho tam giác DEF. A thuộc DE sao cho AD=3AE. B thuộc DF sao cho BD=3BF. Lấy M là trung điểm của EF. MD cắt AB tại C. MD cắt BE tại I. Chứng minh 4 CI = 3 IM.
Cho tam giác DEF có DI là phân giác của góc D; I thuộc EF, ED=10 cm , DF=6 cm , FI= 4,8 cm. a) Tính EI b) Qua I kẻ đường thẳng song song với DF cắt DE tại M. Tính ME;MD;IM c) Chứng minh: DE/DF = ME/MD d) Gọi N là trung điểm của DF; DI cắt MN tại K; FM cắt IN tại H.Chứng minh: KH//MI
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)
=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>EI=8(cm)
b: Ta có: EI+IF=EF
=>EF=6+8=14(cm)
Xét ΔEDF có MI//DF
nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)
=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)
=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)
MD+ME=DE
=>MD+30/7=10
=>MD=40/7(cm)
c: Xét ΔDEF có DI là phân giác
nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)
Xét ΔEDF có MI//DF
nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)
cho tam giác DEF có DE =9cm , DF = 15 cm , EF = 21 cm . lấy M,N, thuộc DE , DF sao cho DM = 3cm , DN = 5cm
a, chứng minh MN //EF
b, Tính MN
c, kẻ trung tuyến DI của tam giác DEF . DI cắt MN tại K . Chứng minh K là trung điểm MN
Cho tam giác DEF có DI là phân giác của góc D; I thuộc EF, ED=10 cm , DF=6 cm , FI= 4,8 cm.
a) Tính EI
b) Qua I kẻ đường thẳng song song với DF cắt DE tại M. Tính ME;MD;IM
c) Chứng minh: DE/DF = ME/MD
d) Gọi N là trung điểm của DF; DI cắt MN tại K; FM cắt IN tại H.Chứng minh: KH//MI
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{IE}{IF}=\dfrac{DE}{DF}\)
=>\(\dfrac{IE}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>IE=8(cm)
b: Xét ΔEDF có MI//DF
nên \(\dfrac{EM}{ED}=\dfrac{EI}{EF}\)
=>\(\dfrac{EM}{10}=\dfrac{8}{12.8}=\dfrac{5}{8}\)
=>\(EM=\dfrac{50}{8}=6,25\left(cm\right)\)
Ta có: ME+MD=DE
=>MD+6,25=10
=>MD=3,75(cm)
Xét ΔEDF có IM//DF
nên \(\dfrac{IM}{DF}=\dfrac{EI}{EF}\)
=>\(\dfrac{IM}{6}=\dfrac{8}{12,8}=\dfrac{5}{8}\)
=>\(IM=6\cdot\dfrac{5}{8}=3,75\left(cm\right)\)
c: Xét ΔEDF có MI//DF
nên \(\dfrac{ME}{MD}=\dfrac{EI}{IF}\)
mà \(\dfrac{EI}{IF}=\dfrac{DE}{DF}\)
nên \(\dfrac{ME}{MD}=\dfrac{DE}{DF}\)
cho tam giác DEF cân tại D. Đường cao DH(H thuộc EF). Trên tia đối EF, lấy điểm M sao cho EM=ED. Kẻ EI vuông góc MD(I thuộc MD).
a)CM tg HDM đồng dạng tg IEM
b)Tia IH cắt tia DF tại N. CM FH=FN
d)ĐK của tg DEF để H là trung điểm của IN
cho tam giác abc vuông tại A,BD là tia phân giác của ABC(D thuộc AC).Kẻ Cx vuông góc với tia BD tại I,Cx cắt tia BA tại E. Lấy điểm K sao cho I là trung điểm của DK.
a)BE=BC?
b) Tam giác EID- tam giác CIK?
c)CK//DE?
d)Tính góc BCK?
e) Lấy điểm M sao cho A là trung điểm MD,Km cắt tia BA tại F, cắt Ec tại N. CM: chu vi tam gaisc DFN lớn hơn 2.AD
1. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Lấy D và E sao cho M, N lần lượt là trung điểm của CD và BE
a, Chứng minh AD = AE
b, Chứng minh A, D, E thẳng hàng
2. Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia AM lấy D sao cho M là trung điểm của AD. Nối B với D, C với D
a, Chứng minh AC = BD. AC // BD
b, Cho góc BAC = 90o. Tính góc BDC
3. Cho tam giác DEF có M là trung điểm của EF. Trên tia đối của tia MD lấy điểm I sao cho MI = MD
a, Chứng minh DE = IF, DE // IF
b, Vẽ DH vuông góc với EF ( H thuộc EF) trên tia đối của tia HD lấy điểm G sao cho HG = HD. Chứng minh EG = IF
Bạn nào làm nhanh nhất mà đúng là mình tick cho nha
Cho tam giác DEF vuông tại E (ED < EF), tia phân giác của góc D cắt EF tại M. Trên tia đối của tia MD lấy điểm N sao cho DM = MN, từ điểm N vẽ đường thẳng vuông góc với EF tại I và cắt DF tại điểm P.
a) Chứng minh tam giác EDM = TAM GIÁC INM.
b) Chứng minh DP = NP.
a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có
MD=MN
góc EMD=góc IMN
=>ΔMED=ΔMIN
b: ΔMED=ΔMIN
=>góc MDE=góc MNI=góc MDP
=>DP=NP
Cho tam giác DEF vuông tại D, gọi M là trung điểm của EF. Trên tia đối của tia MD lấy điểm N sao cho MN = MD. Chứng minh NE // DF và NF // DE
Cho tam giác DEF vuông tại d ,đường phân giác của góc E cắt DF tại M. Vẽ MH vuông góc với EF
a) Chứng minh tam giác DEM = tam giác HEM
b)Chứng minh MD=MH
c) Trên tia đối của tia DE lấy K sao cho DK = HF. Chứng minh 3 điểm K , M, H thẳng hàng.
a, Xét 2 tam giác vuông DEM và HEM có:
ME cạnh chung
\(\widehat{DEM}\)=\(\widehat{HEM}\)(gt)
=> tam giác DEM=tam giác HEM(CH-GN)
b, vì tam giác DEM=tam giác HEM(câu a) suy ra MD=MH(2 cạnh tương ứng)
c, trong tam giác FKE có: FD,KH là 2 đường cao cắt nhau tại M
=> K,M,H thẳng hàng
câu c hướng làm như vậy là đúng rồi đấy bn, nhưng mk diễn đạt nó chưa đc đúng lắm