Cho tam giác ABC có 3đường phân giác AD,BE,CF.Chứng mình:FA/FB nhân BD/DC nhân EC/EA
Cho tam giác ABC, các đường phân giác AD, BE, CF. Biết BC = 36cm, CA = 30cm, BA = 18cm. Tính độ dài các đoạn BD, DC, EA, EC, FA, FB
cho tam giác ABC. có 3 đường phân giác AD, BE và CF.chứng minh FA/FB*DB/DC.EC/EA = 1
Cho tam giác ABC có ba đường phân giác AD, BE và CF. Chứng minh: (DB)/(DC) * (EC)/(EA) * (FA)/(FB) = 1
DB/DC*EC/EA*FA/FB
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)
Cho tam giác ABC có ba đường phân giác AD, BE và CF. Chứng minh: (DB)/(DC) * (EC)/(EA) * (FA)/(FB) = 1
DB/DC=AB/AC
EC/EA=BC/BA
FA/FB=CA/CB
=>DB/DC*EC/EA*FA/FB=(AB*BC*AC)/(AC*BA*CB)=1
cho tam giác ABC. có 3 đường phân giác AD, BE và CF.chứng minh FA/FB*DB/DC.EC/EA = 1
giúp mk vs ạ
AD , BE , CF là các phân giác của tam giác ABC nên ta có :
FA/FB = CA/CB
DB/DC = AB/AC
EC/EA = BC/BA
=> FA/FB . DB/DC . EC/EA = CA.AB.BC/CB.AC.BA = 1
=> ĐPCM
Tk mk nha
Cho tam giác ABC có các đường phân giác AD,BE,CF(D ∈ BC, E ϵ AC, F ∈ AB). Tính \(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=?\)
áp dụng định lý phân giác ta có:\(\left\{{}\begin{matrix}\dfrac{DB}{DC}=\dfrac{AB}{AC}\\\dfrac{EC}{EA}=\dfrac{BC}{AB}\\\dfrac{FA}{FB}=\dfrac{AC}{BC}\end{matrix}\right.\)
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)
Cho △ABC có các đường phân giác AD,BE và CF
Chứng minh : \(\dfrac{DB}{DC}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}=1\)
Áp dụng t/c đường phân giác, ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\) ( 1 )
\(\dfrac{BC}{BA}=\dfrac{EC}{EA}\) ( 2 )
\(\dfrac{CA}{CB}=\dfrac{FA}{FB}\) ( 3 )
Nhân từng vế (1);(2);(3) ta được:
\(\dfrac{AB}{AC}\times\dfrac{BC}{BA}\times\dfrac{CA}{CB}=\dfrac{BD}{CD}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}\)
\(\Leftrightarrow1=\dfrac{BD}{CD}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}\)
ADAD là đường phân giác ˆB→BCBA=ECEAB^→BCBA=ECEA
CFCF là đường phân giác →DBDC.ECEA.FAFB=ABAC.BCBA.CACB=AB.BC.CAAC.BA.CB=1
Cho hình tam giác abc với ba đường phân giác ad,be,cf.Chứng minh
a) DB/DC.EC/EA.FA/FB=1
b)1/AD+1/BE+1/CF>1/BC+1/CA+1/AB
a) Ta có: \(\dfrac{DB}{DC}\cdot\dfrac{EC}{EA}\cdot\dfrac{FA}{FB}\)
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)
=1
Cho tam giác ABC. Ba đường phân giác AD, BE, CF cắt nhau tại I
a) Tính BD/CD × EC/EA × FA/FB và DI/DA + EI/EB + FI/FC
b) CMR : AD^2 = AB.AC - BD.CD
c) CMR : 1/AD + 1/BE + 1/CF > 1/AB + 1/AC + 1/BC