tìm các số nguyên x,y thỏa mãn \(\frac{x}{8}-\frac{1}{4}=\frac{1}{y}\)
tìm các số nguyên x;y thỏa mãn a)\(\frac{5}{x}+\frac{4}{y}=\frac{1}{8}\)
b)tìm số hữu tỉ x thỏa mãn tổng của số đó và nghịch đảo của số đó là 1 số nguyên
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn hệ thức \(y=\frac{1}{x+1}+\frac{8}{x-4}\)
Tìm các số nguyên x,y thỏa mãn \(\frac{x}{8}-\frac{1}{y}=\frac{3}{8}\)
\(\frac{x}{8}-\frac{1}{y}=\frac{3}{8}\)
\(\Rightarrow\frac{1}{y}=\frac{x-3}{8}\)
\(\Rightarrow y\left(x-3\right)=8\)
Ta có bảng sau:
y | 1 | 8 | -1 | -8 | 2 | 4 | -2 | -4 |
x - 3 | 8 | 1 | -8 | -1 | 4 | 2 | -4 | -2 |
x | 11 | 4 | -5 | 2 | 7 | 5 | -1 | 1 |
Vậy các cặp số (x,y) là: (1,11) ; (8,4) ; (-1,-5) ; (-8,2) ; (2,7) ; (4,5) ; (-2,-1) ; (-4,1)
Số các cặp số nguyên (x;y) thỏa mãn \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
\(\Rightarrow x=5:\frac{1-2y}{8}=\frac{40}{1-2y}\)
Do x, y là số nguyên => 40 chia hết cho 1 - 2y
=> 1 - 2y thuộc Ư(40)
Mà 1 - 2y là lẻ => 1 - 2y thuộc {-1; 1; -5; 5}
=> y thuộc {1; 0; 3; -2}
=> x thuộc {-40; 40; -8; 8}
a) Cho biểu thức
P= ($\frac{x}{x-1}$- $\frac{1}{\sqrt{x}-1}$- $\frac{1}{\sqrt{x}+1}$).($\frac{4\sqrt{x}-8}{x\sqrt{x}-4x+4\sqrt{x}}$), với x>0, x $\neq$1, x $\neq$4. Tìm các số nguyên x để P nhận giá trị nguyên dương.
b) Cho 3 số thực x,y,z thỏa mãn điều kiện: x+y+z=0 và xyz $\neq$0. Tính giá trị biểu thức
P= $\frac{x^2}{y^2+z^2-x^2}$ +$\frac{y^2}{z^2+x^2-y^2}$ +$\frac{z^2}{x^2+y^2-z^2}$
a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)
Để P nguyên dương thì x-1 thuộc {1;4;2}
=>x thuộc {2;5;3}
b: x+y+z=0
=>x=-y-z; y=-x-z; z=-x-y
\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)
\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)
\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)
Số các cặp số nguyên (x,y) thỏa mãn \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)là......
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x.(1-2y)=5.8=40
=>x và 1-2y là ước của 40
2y là số chẵn =>1-2y là số lẻ =>1-2y là ước lẻ của 40
Ta có bảng sau:
x | 40 | -40 | 8 | -8 |
1-2y | 1 | -1 | 5 | -5 |
suy ra :
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy.................................................
Tìm các cặp số nguyên x,y thỏa mãn
\(\frac{x}{4}-\frac{1}{y}=\frac{3}{4}\)
\(\frac{x}{4}-\frac{1}{y}=\frac{3}{4}\)
\(\frac{1}{y}=\frac{x-3}{4}\)
\(\left(x-3\right)\times y=4=\left(-1\right)\times\left(-4\right)=\left(-4\right)\times\left(-1\right)=4\times1=1\times4=2\times2=\left(-2\right)\times\left(-2\right)\)
Vậy \(\left(x;y\right)\in\left\{\left(2;-4\right);\left(-1;-1\right);\left(7;1\right);\left(4;4\right);\left(5;2\right);\left(1;-2\right)\right\}\)
\(\frac{x}{4}\)-\(\frac{1}{y}\)=\(\frac{3}{4}\)
\(\frac{1}{y}\)=\(\frac{x-3}{4}\)
\(\Rightarrow\)y.(x-3)=4 hay y và x-3 \(\in\)Ư(4)
Ta có bảng sau:
y | 1 | -1 | 2 | -2 | 4 | -4 |
x-1 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 5 | -3 | 3 | -1 | 2 | 0 |
Vậy (x;y)\(\in\){(5;1);(-3;-1);(3;2);(-1;-2);(2;4);(0;-4)}
Bài 1
1.Tìm các số tự nhiên x;y thỏa mãn:\(x^2\)+\(3^y\)=3026
2.Tìm các số nguyên dương x;y thỏa mãn:\(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}=\frac{1}{2}\)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
câu a làm cách khác đi bạn
Bài 1
a,So sánh hai số sau \(4^{127}\)và \(81^{43}\)
b, Tìm số nguyên x thỏa mãn \(\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+\frac{3}{10}+...+\frac{3}{x.\left(x+1\right):2}=\frac{2015}{336}\)
Bài 2
Cho phân số \(A=\frac{6n+1}{4n+3}\)(với b nguyên)
a Tìm giá trị n nguyên âm để A có giá trị là số nguyên
b, Tìm giá trị n để A là phân số không rút gọn được
Bài 3
a,Tìm các cặp giá trị x,y nguyên thỏa mãn \(\frac{x}{8}-\frac{2}{2y+3}=\frac{7}{12}\)
b, Cho phép toán * thỏa mãn với hai số tự nhiên a và b ta có a*b= 3a+\(b^a\)Tìm các số nguyên tố x,y sao cho 2*x+y*4-8 cũng là số nguyên tố
1.Tìm số nguyên x biết
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
2.tìm các số nguyên x, y thỏa mãn
\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
Mình đang cần gấp! Cảm ơn nhiều
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.