9x4
1+9x4
9x4 -10x2+1=0
\(9x^4-10x^2+1=0\\ \Rightarrow\left(9x^4-9x^2\right)-\left(x^2-1\right)=0\\ \Rightarrow9x^2\left(x^2-1\right)-\left(x^2-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+1\right)\left(9x^2-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+1\right)\left(3x-1\right)\left(3x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Đặt x^2 = t ( t>= 0 )
9t^2 - 10t + 1 = 0
ta có : a + b + c = 9 - 10 + 1 = 0
=> t = 1 ; t = 1/9
theo cách đặt x = 1 ; x = 1/3
\(\Leftrightarrow\left(9x^2-1\right)\left(x^2-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3};1;-1\right\}\)
9x5+9x4+9
Phân tích đa thức thành nhân tử:
a) 50x5-8x3
b) x4-5x2-4y2+10y
c) 36a2-b2+12a+1
d) x3+y3-xy2-x2y
e) 4x2+4x-3
f) 9x4+16x2-4
g) -6x2+5xy+4y2
h)(x2+4x)2+8(x2+4x)+15
i) 9x4+5x2+1
a: \(50x^5-8x^3\)
\(=2x^3\left(25x^2-4\right)\)
\(=2x^3\left(5x-2\right)\left(5x+2\right)\)
b: \(x^4-5x^2-4y^2+10y\)
\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)
\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)
c: \(36a^2+12a+1-b^2\)
\(=\left(6a+1\right)^2-b^2\)
\(=\left(6a+1-b\right)\left(6a+1+b\right)\)
d: \(x^3+y^3-xy^2-x^2y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)^2\)
e: Ta có: \(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
f: Ta có: \(9x^4+16x^2-4\)
\(=9x^4+18x^2-2x^2-4\)
\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(9x^2-2\right)\)
g: Ta có: \(-6x^2+5xy+4y^2\)
\(=-6x^2+8xy-3xy+4y^2\)
\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left(-2x-y\right)\)
h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)
\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)
\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)
5/9x4/7+5/9x3/7
\(\frac{5}{9}x\frac{4}{7}+\frac{5}{9}x\frac{3}{7}\)
\(=\frac{5}{9}x\left(\frac{4}{7}+\frac{3}{7}\right)\)
\(=\frac{5}{9}x1\)
\(=\frac{5}{9}\)
\(\frac{5}{9}\) x \(\frac{4}{7}\)+ \(\frac{5}{9}\)+ \(\frac{3}{7}\)
= \(\frac{5}{9}\)x ( \(\frac{4}{7}\)+ \(\frac{3}{7}\))
= \(\frac{5}{9}\) x 1
= \(\frac{5}{9}\)
4\5x16\9-7\9x4\5-4\5
\(\dfrac{4}{5}\times\dfrac{16}{9}-\dfrac{7}{9}\times\dfrac{4}{5}-\dfrac{4}{5}\)
\(=\dfrac{4}{5}\times\left(\dfrac{16}{9}-\dfrac{7}{9}-1\right)\)
\(=\dfrac{4}{5}\times0\)
\(=0\)
#Đang Bận Thở
4/5 x 16/9 - 7/9 x 4/5 - 4/5
= 4/5 x ( 16/9 - 7/9 - 1 )
= 4/5 x 0 = 0
=\(\dfrac{4}{5}\times\left(\dfrac{16}{9}-\dfrac{7}{9}-1\right)\)
=\(\dfrac{4}{5}\times0\) = 0
(-0.2)^2x5-(8^2x9^5)/3^9x4^3
\(=0.04\cdot5-\dfrac{2^6\cdot3^{10}}{3^9\cdot2^6}=0.2-3=-2.8\)
Phân tích ra nhân tử(Phương pháp dùng hằng đẳng thức)
1) 9(a+b)2-4(a-2b)26
2) 9x2+12x+4
3) 4x4+20x2+25
4) 25x2-20xy+4y2
5) 9x4-12x2y+4y2
6) 4x4-16x2y3+16y6
7) 9x4-12x5+4x6
Làm giúp mình với, nhanh nha mình cần gấp
2) 9x2+ 12x+ 4
<=>(3x)2+ 2.3x.2+ 22 <=>(3x+ 2)2
3) 4x4+ 20x2+ 25
<=>(2x2)2+ 2.2x2.5+ 52 <=>(2x2+5)2
4) 25x2- 20xy+ 4y2
<=> (5x)2- 2.5x.2y+ (2y)2<=> (5x-2y)2
5) 9x4- 12x2y+ 4y2
<=> (3x2)2- 2.3x2.2.y+ (2y)2<=> (3x2- 2y)2
6) 4x4- 16x2y3+ 16y6
<=> (2x2)2- 2.2x2.4y3+ (4y3)2<=> (2x2- 4y3)2
7) 9x4- 12x5+ 4x6
<=> (3x2)2- 2.3x2.2x3+ (2x3)2<=> (3x2- 2x3)2
so sanh 8^25 va 9x4^36