Cho đa thức A(x)=x^100+3x^99+3x^98+...+3x^2+3x+1.Tính A(-2)
Cho đa thức A(x)=x^100+3x^99+3x^98+...+3x^2+3x+1.Tính A(-2)
tính giá trị của biểu thức
a) x^2 +4x + 4 tại x= 98
b) x^3 + 3x^2 +3x+ 1 tại x= 99
a) Thay x = 98 vào biểu thức ta được:
982 + 4.98 + 4
= 982 + 2.2.98 + 22
= ( 98 + 2)2
= 1002 = 10000
b) Thay x= 99 vào biểu thức ta được:
993 +3.992 + 3.99 +1
= 993 + 3.992.1 + 3.99.12 +13
= ( 99 + 1)3
= 1003 = 1000000
a) x^2 + 4x + 4 tại x =98
b) x^3 +3x^2 + 3x + 1 tại x =99
a)Tính giá trị biểu thức A= 2x³ – 3x² + 5x –1 tại x= -2 b) tính nghiệm của đa thức A(x) = x–7 c) cho hai đa thức A(x) = 1 + 3x³ – 5x² + x + 4x⁵ B(x)= 3x³ – x⁴ + 3x² + 6x⁵ – 5 • Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến • Tính A(x) + B(x) d) cho góc nhọn xOy. Gọi M là một điểm thuộc tia phân giác Oz của góc xOy. Vẽ AM vuông góc với Ox (A thuộc Ox), MB vuông góc với Oy (B thuộc Oy) Chứng minh: - MA= MB - đường thẳng BM cắt Ox tại H. Đường thẳng AM cắt Oy tại K. Chứng minh tam giác AMH = tam giác BMK - gọi I là giao điểm của tia Oz và HK. chứng minh OI vuông góc với HK - cho góc xOy = 60⁰. Chứng minh tâm giác OHK đều e) cho tam giác ABC cân tại A có AB = 15cm, BC= 18cm. Vẽ đường phân giác AH của góc BAC ( H thuộc BC). Chứng minh: - tam giác ABH = tam giác ACH - vẽ trung tuyến BM ( M thuộc AC ) cắt AH tại G. Chứng minh G là trọng tâm của tam giác ABC - tính độ dài AH. Từ đó tính độ dài AH - từ H vẽ HK// AC. Chứng minh C,G,K thẳng hàng
e:
Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔABH=ΔACH
Xét ΔABC có
AH,BM là trung tuyến
AH cắt BM tại G
=>G là trọng tâm
BH=CH=9cm
=>AH=căn 15^2-9^2=12cm
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trug điểm của AB
=>C,G,K thẳng hàng
d: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAH vuông tại A và ΔMBK vuông tại B có
MA=MB
góc AMH=góc BMK
=>ΔMAH=ΔMBK
OA+AH=OH
OB+BK=OK
mà OA=OB và AH=BK
nên OH=OK
=>ΔOHK cân tại O
mà OI là phân giác
nên OI vuông góc HK
b: A(x)=0
=>x-7=0
=>x=7
Bài 3 :
Cho đa thức :
f(x) = 9x^3 - 1/3x + 3x^2 - 3x + 1/3x^2 - 1/9x^3 - 3x^2 - 9x + 27 + 3x
a, Thu gọn đa thức f(x)
b, Tính f(3) , f(-3)
Bài 4
Cho đa thức :
F(x) = 2x^6 + 3x^2 + 5x^3 - 2x^2 + 4x^4 - x^3 + 1 - 4x^3 - x^4
a, Thu gọn đa thức f(x)
b, Tính f(1) , f(-1)
c, Chứng minh đa thức f(x) không có nghiệm
- Giúp mình với
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
tính giá trị của đa thức sau : B(x)=x+2x^2 +3x^3+....+99x^99+100x^100 .Tại x=+-1
Khi x=1 thì
B(1)=1+2+...+100=5050
Khi x=-1 thì
B(-1)=-1+2-3+4-5+6-...-99+100
=1+1+...+1
=50
Cho hai đa thức P(x)=\(2x^2-3x^3+x^2+3x^3-x-1-3x\); Q(x)=\(-3x^2+2x^3-x-2x^3-3x-2\) . a) Thu gọc và sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến. b) tính f(x)= P(x) - Q(x).Tính g(x)= P(x) - Q(x), tìm x để đa thức g(x) - (6x+1)=0
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
1)thực hiện phép chia đa thức x^3+3x^2+3 cho đa thức x^3+1
2)tìm số a để đa thức x^3+3x^2+3x+a chia hết cho đa thức x+2
Bài 1.
3x2 + 2 có bậc thấp hơn x3 + 1 nên không thể chia tiếp
Vậy x3 + 3x2 + 3 = 1( x3 + 1 ) + 3x2 + 2
Bài 2.
Ta có : x3 + 3x2 + 3x + a có bậc là 3
x + 2 có bậc là 1
=> Thương bậc 2
lại có hệ số cao nhất của đa thức bị chia là 1
Đặt đa thức thương là x2 + bx + c
khi đó : x3 + 3x2 + 3x + a chia hết cho x + 2
<=> x3 + 3x2 + 3x + a = ( x + 2 )( x2 + bx + c )
<=> x3 + 3x2 + 3x + a = x3 + bx2 + cx + 2x2 + 2bx + 2c
<=> x3 + 3x2 + 3x + a = x3 + ( b + 2 )x2 + ( c + 2b )x + 2c
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}b+2=3\\c+2b=3\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=1\\a=2\end{cases}}\Rightarrow a=2\)
Vậy a = 2
bài4: cho 3 đa thức: A(x)= 5x^3 - 2x; B(x)= 3x^2 + 2x -1 ; C(x)= 2x^3 +3x - 3x^2 +1
a) tính A(x) + B(x) B) A(x) - C(x)
c)tìm đa thức M(x) biest M(x) - B(x) = C(x) d) chứng tỏ x= 1 phần 3 là một nghiệm của đa thức B(x)
a: A(x)+B(x)
=5x^3-2x+3x^2+2x-1
=5x^3+3x^2-1
b: A(x)-C(x)
=5x^3-2x-2x^3+3x^2-3x-1
=3x^3+3x^2-5x-1
c: M(x)=B(x)+C(x)
=3x^2+2x-1+2x^3-3x^2+3x+1
=2x^3+5x
d: B(1/3)=3*1/9+2*1/3-1=1/3+2/3-1=0
=>x=1/3 là nghiệm của B(x)