x^2+y^2/(x-y)^3-2xy/(x-y)^3
Chọn đáp án đúng
\({ (x^{3}+3x^{2}y+3xy^{2}+y^{3}-z^{3}):(x+y-z) }\)
\(A. { x^{2}+y^{2}+z^{2}+2xy+xz+yz }\)
\(B. { x^{2}+y^{2}+z^{2}+2xy-xz-yz } \)
\(D. { x^{2}+y^{2}-z^{2}+2xy-xz-yz } \)
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
a) ( x+3 ) * ( x^2 - 3x +9 ) - ( 54+ x^3 )
b) ( 2x + y ) * ( 4x^2 - 2xy + y^2 ) - ( 2x - y ) * ( 4x^2 + 2xy + y^2 )
c) ( a+b ) ^3 - ( a-b ) ^3 - 2b^3
d) ( x+y+z ) ^ 2 - 2 * ( x+y+z ) * ( x+y ) + y^2 + ( x + y ) ^ 2
a) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
\(=-27\)
b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(8x^3+y^3\right)-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
c) \(\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
\(=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)-\left(a-b\right)^2\right]-2b^3\)
\(=\left(a+b-a+b\right)\left[\left(a^2+2ab+b^2\right)+\left(a^2-ab+ab-b^2\right)-\left(a^2-2ab+b^2\right)\right]-2b^3\)
\(=b^2\left(a^2+2ab+b^2+a^2-ab+ab-b^2-a^2+2ab-b^2\right)-2b^3\)
....
giải hpt x^3-3xy^2-x-1=y^2+2xy-x^2 và y^3-3yx^2+y+1=x^2+2xy-y^2
Cho x+y=2
Tính A=x^3+y^3+3xy*(x+y)
B=x^2+2xy+y^2+4
C=x^3+y^3+3xy*(x+y)+7*(x+y)
A=x^3 + y^3 + 3xy(x+y)
=x+3x^y+3xy^2+y^3
=(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
=(x+y)^2+4=4+4=8
C=x^3+y^3+3xy(x+y)+7(x+y)
=(x+y)^3+7(x+y)
=2^3+7.2
=8+14=22
Rút gọn biểu thức:
a) (x+y)2- (x-y)^2
b) 2*(x+y)(x-y) + (x+y)^2+(x-y)^2
c) (x+3)(x^2 -3x * 9 )(54 +x^3)
d) (2x+y)(4x^2 - 2xy + y^2 ) - (2x-y)(ax^2 +2xy +y^2 )
a) (x+y+x_y).(x+y_x+y)
b ) (( x + y )+(x _ y))2
d ) 8x3 + y3 _ 8x3 + y3 =2y3
Cho x-y=7. Tính giá trị biểu thức A=x(x+2)+y(y-2)-2xy, B=x3 -3xy(x-y)-y3-x2+2xy-y2
rút gọn biểu thức
a)(x+3)(X^2-3x+9)-(54+x^3)
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
a) Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
=-27
cho các số thực dương x y thỏa mãn x^3+y^3+x^2+y^2=2xy(x+y).Tìm GTNN của K = x ^ 3 + y ^ 3 + 3/(x ^ 2 + y ^ 2) + 2/((x + y) ^ 2)
Ta có:
x^3 + y^3 + x^2 + y^2 = 2xy(x+y)
Đặt S = x + y, P = xy, ta có:
x^3 + y^3 + x^2 + y^2 = (x+y)(x^2 + y^2) = (x+y)^3 - 3xy(x+y) = S^3 - 3PS
Vậy ta có:
S^3 - 3PS + S^2 - 2P = 0
S^3 + S^2 - 3PS - 2P = S(S^2 + S - 3P) - 2P = 0
Do đó, ta có:
S^2 + S - 3P = 0
Sử dụng công thức Viết để tính nghiệm của phương trình bậc hai này, ta được:
S = (-1 + sqrt(1 + 12P))/2 hoặc S = (-1 - sqrt(1 + 12P))/2
Vì x và y là các số thực dương, nên ta chỉ quan tâm đến nghiệm dương của S, tức là:
S = (-1 + sqrt(1 + 12P))/2
Tiếp theo, ta có:
K = x^3 + y^3 + 3/(x^2 + y^2) + 2/((x+y)^2)
= S^3 - 3PS + 3/(S^2 - 2P) + 2/(S^2)
= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2/(S^2)
= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2S^2/(S^2 * (S^2 - 2P))
= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 - 2P))
= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 + 1 - 2xy))
= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)P)
= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)(S^3 - 3PS))
= S^3 - 3PS + (5S^4 - 6PS^2)/(-2S^5 + 10S^3 - 2PS^2 + 2P)
= S^3 - 3PS + (5S^4 - 6PS^2)/(2S^5 - 10S^3 + 2PS^2 - 2P)
= S^3 - 3PS + (5S^2 - 6P)/(2S^3 - 10S +
Rút gọn biểu thức:
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)
b) (2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
c) (x+y+z)^2-2(x+y+z)(x+y)+(x+y)
giúp mình vs!!!!
\(a,\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x\left(x-3\right)\)
\(=x^3-6x^2+12x-27-x^3+x+6x^2-18x\)
\(=-5x-27\)
\(b,\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y+z-x-y\right)^2\)
\(=z^2\)
a)
=\(x^3-6x^2+12x+8-27-x^3+x+6x^2-18x\)
=-5x-19
b)
=\(8x^3+y^3-8x^3+y^3\)
=\(2y^3\)
c)
=(x+y+z-x-y)\(^2\) +x+y
=\(z^2+x+y\)
hc tốt