Tìm các số nguyên tố a,b,c thỏa mãn \(a^2+5ab+b^2=7^c\)
Tìm tất cả các số nguyên tố a, b, c thỏa mãn a2 + 5ab + b2 = 7c
Ta có:
c=a^b+b^a\ge2^2+2^2>2
=> c là số lẻ
=> trong a,b phải có 1 số chẵn
Xét a chẵn => a = 2
=> 2b + b2 = c
Xét b > 3 => b2 chia 3 dư 1
=> b2 chia 3 dư 1
2b chia 3 dư 2
=> 2b + b2 chia hết cho 3
=> c chia hết cho 3
=> c = 3
mà ab + ba = c > 3 ( loại c = 3)
Xét b = 3 => c = 17
Vậy (a,b,c) = (2,3,17) hoặc ( 3,2,17)
Tham khảo câu trả lời của sư phụ tớ ở đây:
Câu hỏi của shitbo - Toán lớp 6 - Học toán với OnlineMath
Tìm tất cả các số nguyên tố a;b;c thỏa mãn a^2+b^2+c^2=abc
Tìm các số nguyên tố a, b, c thỏa mãn: a^2 + b^2 + c^2 = 3494
ta có 3494 = 2.
Bài giải : Giả sử a < b < c, ta xét 3 trường hợp như sau :
TH1: Nếu a = 2; b =3; c = 5 thì a2 + b2 + c2 = 38 ( không phải số nguyên tố ) (1)
TH2: Nếu a = 3; b = 5; c = 7 thì a2 + b2 + c2 = 83 ( thỏa mãn yêu cầu của đề bài ) ( 2)
TH3: Nếu a,b,c > 3 => a,b,c không chia hết đc cho 3
=> a2 = 1(mod3); b2 = 1(mod3); c2 = 1(mod3) => a2 + b2 + c2 = 3(mod3) a2 + b2 + c2 chia hết cho 3 (3)
=> Kết luận: Từ (1);(2);(3) ta có thể suy ra chỉ có duy nhất là 3 số là ta cần tìm - thỏa mãn yêu cầu của đề bài là: 3,5 và 7 .
Ta thấy rằng: a,b,c cùng chẵn => chẵn (chọn)
a,b,c cùng lẻ => lẻ (loại)
trong a,b,c có một số lẻ, hai số chẵn => lẻ (loại)
trong a,b,c có hai số lẻ, một số chẵn => chẵn (chọn)
Nhưng với trường hợp a,b,c cùng chẵn không thỏa mãn vì \(2^2+2^2+2^2=12\ne3494\)
Nên ta chỉ còn trường hợp trong a,b,c có hai lẻ, một chẵn
Giả sử số chẵn trong ba số đó là c thì \(c=2\Rightarrow a^2+b^2=3490\)
Vì các số chính phương chia cho 3 dư 0 hoặc 1 mà 3490 chia 3 dư 1 nên một trong hai số a,b phải chia hết cho 3. Giả sử số đó là b thì \(b=3\)
\(\Rightarrow a^2=3481\Rightarrow a=59\left(tm\right)\)
Vậy \(\left(a;b;c\right)=\left(59;3;2\right)\)và các hoán vị của bộ số này
tìm 3 số nguyên tố a,b,c biết:
a^2+5ab+b^2=7^c
Từ gt => (a-b)^2 = 7^c - 7 chia hết cho 7
=> a-b chia hết cho 7 vì 7 nguyên tố => (a-b)^2 = 7^c - 7 chia hết cho 49
=> 7^(c-1) - ab chia hết cho 7. Mà c nguyên tố nên 7^(c-1) chia hết cho 7
=> ab chia hết cho 7. Mà a-b chia hết cho 7 nên a và b đồng dư khi chia cho 7 và cùng chia hết cho 7
=> a=b=7 vì nguyên tố
=> c=3 (nguyên tố)
tìm các số nguyên dương a;b;c;d thỏa mãn a+2b+3c=3d!+1.biết tồn tại các số nguyên tố p;q thỏa mãn a=(p+1)(2p+1)=(q+1)(q-1)2
Tìm tất cả các số nguyên tố a, b, c và các số nguyên dương d thỏa mãn a 2 + b 2 + c 2 = 9d 2 + 19 giúp mik vs
tìm tất cả các số nguyên tố có dạng p= a^2+b^2+c^2 với a,b,c nguyên dương thỏa mãn a^4+b^4+c^4 chia hết cho p
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
Câu 5 : ( 1 điểm ) :
Tìm các số nguyên tố a , b , c thỏa mãn : b - a = c - b = 2
Câu 5:
Các số nguyên tố a , b , c thỏa mãn : b - a = c - b = 2 là:
a = 3 ; b = 5 ; c = 7
~~ BN K HỘ MK NHÉ! - CHÚC BN HỌC TỐT~~
a) Tìm các số nguyên tố p để p2 + 2p cũng là số nguyên tố
b) Cho bốn số thực a, b, c, d thỏa mãn đồng thời a+b+c+d=7 và a2+b2+c2+d2=13. Hỏi a có thể nhận giá trị lớn nhất và nhỏ nhất là bao nhiêu?
a) Nếu p=3 thì \(2^p+p^2=2^3+3^2=17\) là số nguyên tố
Nếu \(p\ge5\) thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)=\left(2^p+1\right)+\left(p-1\right)\left(p+1\right)\)
Khi p là số nguyên tố , \(p\ge5\)=> p lẻ và p không chia hết cho 3; do đó: \(\left(2^p+1\right)\)chia hết cho 3 và (p-1)(p+1) chia hết cho 3 \(\Rightarrow\left(2^p+p^2\right)\)chia hết cho 3 \(\Rightarrow p^2+2^p\)không là số nguyên tố
Khi p=2, ta có : \(2^p+p^2=2^2+2^2=8\)là hợp số
Vậy duy nhất có p=3 thỏa mãn.
b) \(a+b+c+d=7\Rightarrow b+c+d=7-a\Rightarrow\left(b+c+d\right)^2=\left(7-a\right)^2\)
Mặt khác: \(\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\Rightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\)
Lại có : \(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow49-14a+a^2\le39-3a^2\Leftrightarrow4a^2-14a+10\le0\)
Giải ra được : \(1\le a\le\frac{5}{2}\)
Vậy : a có thể nhận giá trị lớn nhất là \(\frac{5}{2}\), nhận giá trị nhỏ nhất là 1