cho đường thẳng (d): y=2x+m-1 và (d') : y=x+m
Tìm giá trị của m để khoảng cách từ điểm A(-1;1) đến (d) bằng 2 và khoảng cách từ A đến (d') bằng 1
cho đường thẳng y=(m-2) x+2 (d) a, CMR: đường thẳng (d) luôn đi qua 1 điểm cố định với mọi m b,tìm già trị của m để khoảng cách từ gốc tọa độ đến đương thẳng (d) =1 c, tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng m là lớn nhất
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
Cho đường thẳng: y=(m-2)x +2 (d) a, Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định với mọi giá trị của m b, Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d bằng 1 c, Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d có giá trị lớn nhất
Cho đường thẳng y = (m - 2)x +2 (d)
a) Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định với mọi giá trị của m
b) Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d bằng 1
c) Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d có giá trị lớn nhất
cho đường thẳng (d): y=m(2x-1)+3-2x
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng 1.
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) đạt giá trị lớn nhất.
1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.
Cho đường thẳng (d):
y=m(2x-1)+3-2x
a) Tìm điểm cố định thuộc đường thẳng đã cho khi m thay đổi.
b) Tìm m để khoảng cách từ O đến đường thẳng (d) đạt giá trị lớn nhất.
Cho đường thẳng (d) có phương trình y=(2m-1)x + m+1 và đường thẳng _d') có phương trình \(y=x+3\)
a) Tìm giá trị của m để đường thẳng (d) cắt đường thẳng (d') tại 1 điểm trên trục tung
b) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) đạt giá trị lớn nhất và giá trị lớn nhất đó bằng bao nhiêu
Trong mặt phẳng tọa độ Oxy cho parabol (P): y=-x2, đường thẳng (d): y=2x-m2+1. Tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt D,E sao cho khoảng cách từ D đến trục Oy bằng khoảng cách từ E đến trục Oy
Phương trình hoành độ giao điểm của (P) và (d):
x2 + 2x -m2 + 1 = 0
Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0
Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)m \(\in\varnothing\)
Cho đường thẳng: y=(m-2)x +2 (d)
a, Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định với mọi giá trị của m
b, Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d bằng 1
c, Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d có giá trị lớn nhất
Cho đường thẳng: y=(m-2)x +2 (d)
a, Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định với mọi giá trị của m
b, Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d bằng 1
c, Tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng d có giá trị lớn nhất