Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tống lê kim liên
Xem chi tiết
Phương Trâm
11 tháng 8 2017 lúc 21:47

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{2a}{2c}=\dfrac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a-3b}{2c-3d}=\dfrac{2a+3b}{2c+3d}\) ( đpcm )

b) Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) ( đpcm ).

Sakura Nguyen
11 tháng 8 2017 lúc 21:52

Theo đề bài ta có:
a/b=c/d=a/c=b/d
Áp dụng tính chất dãy tỉ số bằng nhau:
a/c=b/d=2a/2c=3b/3d=2a+3b/2c+3d
=2a-3b/2c-3d
=>2a+3b/2c+3d=2a-3b/2c-3d=2a+3b/2a-3b=2c+3d/2c-3d (đpcm)
b) Theo đề bài ta có:
a/b=c/d=ab/b^2=cd/d^2=ab/cd=b^2/d^2 (*)
Áp dụng tính chất dãy tỉ số bằng nhau :
a/b=c/d=a/c=b/d=a^2/c^2/b^2/d^2=a^2-b^2/c^2-d^2(**)
Từ (*) và(**) suy ra ab/cd=a^2-b^2/c^2-d^2 (đpcm)
(có thể trình bày theo cách khác)

Công chúa vui vẻ
Xem chi tiết
Phạm Ngân Hà
4 tháng 11 2017 lúc 21:16

a) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)

Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)

Ta có:

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b}{d}\) (2)

Từ (1) và (2) suy ra \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

kuroba kaito
4 tháng 11 2017 lúc 21:25

\(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)

áp dụng tính chất dãy tỉ số = nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)

= \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (đpcm)

Phạm Ngân Hà
4 tháng 11 2017 lúc 21:38

Còn 3 đến 4 cách nữa: áp dụng t/c của dãy tỉ số bằng nhau, t/c của tỉ lệ thức, áp dụng ĐNg,...

Lê Thu Trang
Xem chi tiết
@Hacker.vn
Xem chi tiết
Trình Nguyễn Quang Duy
Xem chi tiết
@Hacker.vn
Xem chi tiết
Dương Quỳnh My
22 tháng 10 2016 lúc 21:41

a, a/b=c/d
<=>a/c=b/d
<=>2a/2c=3b/3d=2a+3b/2c+3d=2a-3b/2c-3d
<=>2a+3b/2a-3b=2c+3d/2c-3d(đpcm)

Saitou Yakumo
Xem chi tiết
Jack Viet
Xem chi tiết
Nguyễn Thị Ngọc Ánh
5 tháng 6 2018 lúc 19:13

a, Vì \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow ab=c^2\)

Ta có :

\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b+a\right)\left(b-a\right)}{a^2+ab}=\dfrac{\left(b+a\right)\left(b-a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)

Vậy \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)

Hatake Kakashi
Xem chi tiết
Phạm Minh Châu
27 tháng 9 2017 lúc 20:35

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a)\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(1)

\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

b)\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(1)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)(2)

Từ (1) và(2)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

c)\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(ck+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\)(1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)

Từ (1) và(2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

k cho mình nhé