cho a/b=c/d Chứng minh a^2/c^2 = 2a^2 + 3b^2 / 2c^2 + 3d^2
Cho a/b = c/d . Chứng minh :
a) \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b) \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{2a}{2c}=\dfrac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a-3b}{2c-3d}=\dfrac{2a+3b}{2c+3d}\) ( đpcm )
b) Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) ( đpcm ).
Theo đề bài ta có:
a/b=c/d=a/c=b/d
Áp dụng tính chất dãy tỉ số bằng nhau:
a/c=b/d=2a/2c=3b/3d=2a+3b/2c+3d
=2a-3b/2c-3d
=>2a+3b/2c+3d=2a-3b/2c-3d=2a+3b/2a-3b=2c+3d/2c-3d (đpcm)
b) Theo đề bài ta có:
a/b=c/d=ab/b^2=cd/d^2=ab/cd=b^2/d^2 (*)
Áp dụng tính chất dãy tỉ số bằng nhau :
a/b=c/d=a/c=b/d=a^2/c^2/b^2/d^2=a^2-b^2/c^2-d^2(**)
Từ (*) và(**) suy ra ab/cd=a^2-b^2/c^2-d^2 (đpcm)
(có thể trình bày theo cách khác)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng:
a)\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
a) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)
Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)
Ta có:
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b}{d}\) (2)
Từ (1) và (2) suy ra \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)
áp dụng tính chất dãy tỉ số = nhau ta có
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)
= \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (đpcm)
Còn 3 đến 4 cách nữa: áp dụng t/c của dãy tỉ số bằng nhau, t/c của tỉ lệ thức, áp dụng ĐNg,...
Cho tỉ lệ thức a/b=c/d . chứng minh rằng ta có các tỉ lệ thức sau ( giả thiết các tỉ lệ thức đều có nghĩa) : a) 2a+3b/2a-3b = 2c+3d/2c-3d b) ab/cd= a^2 - b^2/c^2 - d^2 c) (a+b/c+d)^2 = a^2+b^2/c^2+d^2
a, \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b, \(\frac{a^2.b^2}{c^2.d^2}=\frac{a^4+b^4-2a^2.b^2}{c^4+d^4-2c^2.d^2}\)
Cho tỉ lệ thức a/b=c/d.Chứng minh
a)3a+5b/3a-5b=3c+5d/3c-5d
b) 2a + 3b/ 2a - 3b= 2c+3d/2c-3d
c)ab/cd=a^2-b^2/c^2-d^2
a, \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b, \(\frac{a^2.b^2}{c^2.d^2}=\frac{a^4+b^4-2a^2b^2}{c^4+d^4-2c^2d^2}\)
a, a/b=c/d
<=>a/c=b/d
<=>2a/2c=3b/3d=2a+3b/2c+3d=2a-3b/2c-3d
<=>2a+3b/2a-3b=2c+3d/2c-3d(đpcm)
B1:
Cho a/b = c/d CMR:
a) 2a + 3b/ 2a - 3b = 2c + 3d/ 2c - 3d
b)a.b/c.d = a^2 - b^2/ c^2 - d^2
c)(a +b / c+d)^2 = a^2 +b^2/c^2 + d^2
Cho tỉ lệ thức \(\dfrac{a}{c}=\dfrac{c}{b}\) chứng minh rằng:
a)\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
b)\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
a, Vì \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow ab=c^2\)
Ta có :
\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b+a\right)\left(b-a\right)}{a^2+ab}=\dfrac{\left(b+a\right)\left(b-a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)
Vậy \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau:
a)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b)\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-b^2}\)
c)\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a)\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(1)
\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b)\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(1)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và(2)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
c)\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(ck+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\)(1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và(2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
k cho mình nhé