Tính:
\(\frac{9x^2}{11y^2}\div\frac{3x}{2y}\div\frac{6x}{11y}\)
Tính:
a)\(\frac{9x^2}{11y^2}:\frac{6x}{11y}\)
b)\(\frac{x^2-49}{x-7}+x-2\)
c)\(\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
a) \(\frac{9x^2}{11y^2}:\frac{6x}{11y}=\frac{9x^2}{11y^2}\cdot\frac{11y}{6x}=\frac{3xy}{2}\)
b) \(\frac{x^2-49}{x-7}+x-2=\frac{\left(x-7\right)\left(x+7\right)}{x-7}+x-2=x+7+x-2=2x+5\)
c) \(\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
= \(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{1\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{18}{\left(3-x\right)\left(x+3\right)}\)
= \(\frac{3x-9}{\left(x-3\right)\left(x+3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)(đk: \(x-3\ne0\)=> \(x\ne3\))
Nhân phân thức
a) \(\frac{30x^3}{11y^2}.\frac{121y^5}{25x}\)
b) \(\frac{x+3}{x^2-4}.\frac{8-12x+6x^2-x^3}{9x+27}\)
a) \(\frac{30x^3}{11y^2}.\frac{121y^5}{25x}=\frac{6x^2.11y^3}{5}=\frac{66x^2y^3}{5}\)
b) \(\frac{x+3}{x^2-4}.\frac{8-12x+6x^2-x^3}{9x+27}=\frac{x+3}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)^3}{9\left(x+3\right)}\)
\(=\frac{-\left(x-2\right)^2}{9\left(x+2\right)}\)
p/s: chúc bạn học tốt
Giải phương trình :
a. \(\frac{2}{x-14}-\frac{5}{x-13}=\frac{2}{x-9}-\frac{5}{x-11}\)
b.\(\frac{12x+1}{6x-2}-\frac{9x-5}{3x+1}=\frac{108x-36x^2-9}{4.\left(9x-1\right)^2}\)
bài 11.rút gọn biểu thức:
\(a,\dfrac{9x^2}{11y^2}:\dfrac{3x}{2y}:\dfrac{6x}{11y}\) \(b,\dfrac{3x+15y}{x^3-y^3}:\dfrac{x+5y}{x-y}\)
\(c,\dfrac{x^2-1}{x^2-4x+4}:\dfrac{x+1}{2-x}\) \(d,\dfrac{5x+10}{x+2}:\dfrac{5y}{x}\)
\(e,\dfrac{2x}{3x-3y}:\dfrac{x^2}{x-y}\) \(f,\dfrac{5x-3}{4x^2y}-\dfrac{x-3}{4x^2y}\)
\(g,\dfrac{3x+10}{x+3}-\dfrac{x+4}{x+3}\) \(h,\dfrac{4}{x-1}+\dfrac{2}{1-x}+\dfrac{x}{x-1}\)
\(i,\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\) \(j,\dfrac{x-2}{x-6}-\dfrac{x-18}{6-x}+\dfrac{x+2}{x-6}\)
\(k,\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\) \(m,\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(n,\dfrac{3}{x+3}-\dfrac{x-6}{x^2+3x}\) \(p,\dfrac{x+3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\)
f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)
g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)
h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)
n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)
p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)
k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)
m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
chia phân thức
\(\frac{2x^3-2y^3}{3x+3y}\div\frac{x^2-2xy+y^2}{6x+6y}\)
Điều kiện: \(\hept{\begin{cases}3\left(x+y\right)\ne0\\x^2-2xy+y^2\ne0\\6\left(x+y\right)\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x+y\ne0\\\left(x-y\right)^2\ne0\\x+y\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-y\\x\ne y\end{cases}}}\)
\(\frac{2x^3-2y^3}{3x+3y}:\frac{x^2-2xy+y^2}{6x+6y}\)
\(=\frac{2\left(x^3-y^3\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)
\(=\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)
\(=\frac{4\left(x^2+xy+y^2\right)}{x-y}\)
thực hiện phép tính \(\frac{x^2-y^2}{6x^2y^2}\div\frac{x+y}{3xy}\)
DK: \(x\ne0;y\ne0\)
\(\left(\frac{x^2-y^2}{6x^2y^2}\right):\left(\frac{x+y}{3xy}\right)=\left(\frac{\left(x-y\right)\left(x+y\right)}{6x^2y^2}\right).\left(\frac{3xy}{\left(x+y\right)}\right)=\frac{x-y}{2xy}\)
\(A=\left(\frac{2+4x}{8+4x}-\frac{x}{3x-6}+\frac{2x^3}{12x-3x^3}\right)\div\frac{6x+13x^2}{24x-12x^2}\)
a) Tìm TXĐ và Rút gọn A
b) Tìm x để \(A>0,A>-1\)
1, Thực hiện tính cộng, trừ, nhân, chia các phân thức sau:
a,\(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
b,\(\frac{2x+3}{4x^2y^2}:\frac{6x+9}{10x^2y}\)
c,\(\frac{x^2-y^2}{6x^2y^2}:\frac{x+y}{3xy}\)
d,\(\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10x}{1-6x+9x^2}\)
a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)
\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)
\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)
\(=\frac{2x-7-5+3x}{10x-4}\)
\(=\frac{5x-12}{10x-4}\)
Cho \(\frac{3x-2y}{4}=\frac{2x-4x}{3}=\frac{4y-3z}{2}\)
CMR: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)