Tính \(B=10+\frac{10}{1+2}+\frac{10}{1+2+3}+...+\frac{10}{1+2+3+...+100}\)
bài 1: Tính
a, \(A=1+3+3^2+3^3+....3^n\)
b, \(B=\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+....+\frac{1}{10^{100}}\)
a.
\(A=1+3+3^2+3^3+...+3^n\)
\(3A=3+3^2+3^3+3^4+...+3^{n+1}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{n+1}\right)-\left(1+3+3^2+3^3+...+3^n\right)\)
\(2A=3^{n+1}-1\)
\(A=\frac{3^{n+1}-1}{2}\)
b.
\(B=\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{99}}+\frac{1}{10^{100}}\)
\(10B=10+\frac{1}{10}+\frac{1}{10^2}+...+\frac{1}{10^{98}}+\frac{1}{10^{99}}\)
\(10B-B=\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{99}}+\frac{1}{10^{100}}\right)-\left(10+\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^{98}}+\frac{1}{10^{99}}\right)\)
\(9B=\frac{1}{10^{100}}-10\)
\(B=\frac{\frac{1}{10^{100}}-10}{9}\)
a, Tính : \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b, Tính : \(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
c, Tính : \(\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
Tính hợp lý các tổng và tích sau:
1) \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
2) \(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
3) \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{300}}\)
\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+.....+\frac{5}{25.28}\)
\(=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{25.28}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}.\frac{3}{14}=\frac{5}{14}\)
a)Đặt A=Tổng trên, ta có:
\(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(2A=2+1+...+\frac{1}{2^{99}}\)
\(2A-A=\left(2+1+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(A=2-\frac{1}{2^{100}}\)
b)có đứa làm rồi
c)Đặt C=Tổng trên
\(3C=3\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{300}}\right)\)
\(3C=1+\frac{1}{3}+...+\frac{1}{3^{299}}\)
\(3C-C=\left(1+\frac{1}{3}+...+\frac{1}{3^{299}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{300}}\right)\)
\(2C=1-\frac{1}{3^{300}}\)
\(C=\frac{1-\frac{1}{3^{300}}}{2}\)
a)Chứng minh rằng: \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+..+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
b)\(A=\frac{-21}{10^{2016}}+\frac{-12}{10^{2017}};B=\frac{-12}{10^{2016}}+\frac{-21}{10^{2017}}\)
So sánh A và B
a/ Ta có
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)
\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
Thế lại bài toán ta được:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)
\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)
b/ Ta có:
A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)
\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)
Vậy A < B
Tính:
a.A = \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b. B = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
c. C = \(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
Bài 9: tính
a, A= 1+2+3+4+....+100
b,B=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\)
c, C=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{200}+.......+\frac{1}{1400}\)
a) 1 + 2 + 3 + 4 + ... + 100
= (100 + 1) x 100 : 2
= 5050
a) A=(100-1):1+1=100 số hạng
A=100:2=50 cặp
tính giá trị của từng cặp số = (1+100)+(2+99)+(3+98)+...+(50+51)=101
tính giá trị của biểu thức A: 50*101=5050
[ mình tính theo công thức đó ]
Tính
\(\frac{1}{2}-\frac{1}{3}-\frac{2}{3}+\frac{1}{4}-\frac{2}{4}+\frac{3}{4}+...+\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}\)
Tính nhanh :
a ) S = 2+4+6+8+.....+2018
b ) S= 10+102+103+...+10100
c) S=\(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.....+\frac{1}{5^{100}}\)
d) S=\(\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+....+\frac{2018!}{2020!}\)
biết rằng : n!=1×2×3×...×n
VD : 1! = 1
2! = 2.1
3!=1.2.3
4!=1.2.3.4
! : giai thừa
a) 2 +4+6+8+...+2018
= ( 2018+2) x 1009 : 2
= 2020 x 1009 : 2
= 1009 x (2020:2)
= 1009 x 1010
= 1 019 090
b) S = 10 + 102 + 103 + ...+ 10100
=> 10.S = 102 + 103 + 104 +...+ 10101
=> 10.S - S = 10101-10
9.S=10101- 10
\(\Rightarrow S=\frac{10^{101}-10}{9}\)
c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5S-S=1-\frac{1}{5^{100}}\)
\(4S=1-\frac{1}{5^{100}}\)
\(S=\frac{1-\frac{1}{5^{100}}}{4}\)
e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!
d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)
\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(S=\frac{1}{2}-\frac{1}{2020}\)
\(S=\frac{1009}{2020}\)
\(CMR:1234321=\left(10^3+10^2+10+1\right)^2\)
Tính
\(\frac{2^{-2}-\left(\frac{3}{4}\right)^{-4}.\left(\frac{-1}{2}\right)^2}{10^{-1}+\left(\frac{-1}{8}\right)^6}\)
Làm câu nào cx đc. Cấm sửa đề nhé. đúng 100%
1.ta có :
\(\left(10^3+10^2+10+1\right)^2\)
=\(\left(1111\right)^2\)
=1234321
hc tốt