cho tam giác ABC cân tại A có \(\widehat{A}=20^o\) . Đặt BC=a, CA=b. Cmr:
\(a^3+b^3=3a^2\)
Tam giác ABC cân tại A, \(\widehat{A}=20^o\),AB=AC=b,BC=a.Chứng minh:\(a^3+b^3=3ab^2\)
Bài 3. Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của \(\widehat{HAC}\)cắt HC tại D. Gọi K là hình chiếu của D trên AC. Biết BC=25, DK =6
a) CMR: Tam giác ABD cân
b) Tính AB
Bài 4. Cho tam giác ABC có \(\widehat{A}=120^0\), BC=a, AC=b, AB=c
CMR: \(a^2=b^2+bc+c^2\)
#)Giải :
a)\(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{BAD}+\widehat{DAC}=90^o\left(1\right)\)
\(\Delta HAD\)vuông tại H (gt)\(\Rightarrow\widehat{HDA}+\widehat{HAD}=90^o\left(2\right)\)
Vì AD là tia phân giác của \(\widehat{HAC}\Rightarrow\)\(\widehat{HAD}=\widehat{DAC}\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{BAD}=\widehat{DAC}\)
\(\Rightarrow\Delta ABD\)cân tại A
b) Từ cmt \(\Rightarrow AB=BD\)(tính chất của tam giác cân)
Đặt \(AB=BD=x\)
Áp dụng hệ thức lượng trong tam giác vuông ABC
\(\Rightarrow AB^2=HB.HC\)
Hay \(x^2=\left(x-6\right)25\)
\(\Rightarrow x^2-25+150=0\)
\(\Rightarrow\left(x-10\right)\left(x-15\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-10=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\x=15\end{cases}}}\)
Vậy AB = 10 hoặc AB = 15
cho tam giác ABC cân tại A có \(\widehat{A}\)=20 , AB=AC=b , BC=a , đường cao AH . Cmr :
a)CH=\(\frac{1}{2}\)x \(\frac{a^2}{b}\)
b)\(a^3+b^3=3ab^2\)
Cho tam giác ABC vuông tại A có \(\widehat B = {30^o},AB = 3\;cm.\) Tính \(\overrightarrow {BA} .\overrightarrow {BC} ;\;\overrightarrow {CA} .\overrightarrow {CB} .\)
Ta có: \(BC = \frac{{AB}}{{\cos {{30}^o}}} = 3:\frac{{\sqrt 3 }}{2} = 2\sqrt 3 \); \(AC = BC.\sin \widehat {ABC} = 2\sqrt 3 .\sin {30^o} = \sqrt 3 .\)
\(\overrightarrow {BA} .\overrightarrow {BC} = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|\cos (\overrightarrow {BA} ,\overrightarrow {BC} ) = 3.2\sqrt 3 .\cos \widehat {ABC} = 6\sqrt 3 .\cos {30^o} = 6\sqrt 3 .\frac{{\sqrt 3 }}{2} = 9.\)
\(\overrightarrow {CA} .\overrightarrow {CB} = \left| {\overrightarrow {CA} } \right|.\left| {\overrightarrow {CB} } \right|\cos (\overrightarrow {CA} ,\overrightarrow {CB} ) = \sqrt 3 .2\sqrt 3 .\cos \widehat {ACB} = 6.\cos {60^o} = 6.\frac{1}{2} = 3.\)
Bài 1: Cho tam giác ABC cân tại A. Lấy D, E thuộc BC sao cho BD = CF. CMR: tam giác ABC cân tại A.
Bài 2: Tam giác ABC cân tại A. Lấy M thuộc AB, N thuộc AC sao cho AM = AN.
a) CMR: MN//BC.
b) Cho CM cắt BN tại I. CMR: IB = IC.
Bài 3: Tam giác ABC cân tại A. Lấy M thuộc BC. Vẽ MK//AB (K thuộc AC). CMR: MK = KC.
Cho tam giác ABC có 3 đường phân giác cắt nhau tại I. Gọi D, E, F là hình chiếu của I trên các cạnh BC, CA, AB. Đặt BC=a, CA=b, AB=c, p= \(\frac{a+b+c}{2}\). CMR AE= AF = p-a
1) Cho tam giác ABC cân tại đỉnh A qua A vẽ đường thẳng d song song với BC. Trên đường thẳng d và các cạnh AB, AC lần lượt lấy các điểm D, E, F sao cho C và D thuộc cùng một nửa mặt phẳng bờ AB và DE=DF. Chứng minh rằng \(\widehat{AED}\)= \(\widehat{AFD}\)
2) Cho tam giác ABC có \(\widehat{A}=30^o\);\(\widehat{B}=40^o\); AD là đường phân giác. Đường thẳng vuông góc với AD tại A cắt BC tại E. Tính giá trị của CE :(AB+AC-BC)
3) cho tam giác \(\widehat{ABC}=40^o\); \(\widehat{ACB}=30^o\). Bên ngoài tam giác đó dựng tam giác ADC có \(\widehat{ACD}=\widehat{CAD}=50^o\)Chứng minh rằng tam giác BAD cân.
1.Cho tam giác ABC, A = 60. P/g BD, CE cắt nhau tại O. CMR:
a)ntam giác DOE cân
b)BE + CD = BC
2.Cho tam giác ABC cân đỉnh A. Trên cạnh AB lấy điểm D, trên tia đối của tiaa CA lấy điểm E sao cho BD = CE. Nối D vs E. Gọi I là trung điểm DE
CMR: 3 điểm B, I, C thẳng hàng
3.Tam giác ABC và tam giác A'B'C' có AB = A'B', AC = A'C'. Hai góc A và A' bù nhau. vẽ trung tuyến AM rồi kéo dài một đoạn MD = MA
CMR: a) ABD = A'
b) AM = \(\frac{1}{2}\)B'C'
1.a,
Vi:\(\Delta ABC\)co \(\widehat{A}=60\)do nen \(\Delta ABC\)la tam giac deu(dinh nghia)
\(\Rightarrow\widehat{ABC}=\widehat{BCA}=60\)do(Dinh ly Py-ta-go)
Ma BD,CE lan luot la phan giac cua \(\widehat{ABC}\)va\(\widehat{ACB}\)nen \(\widehat{B_1}=\widehat{C_1}=\widehat{B_2}=\widehat{C_2}\)
\(\Delta BOC\)co :\(\widehat{B_2}=\widehat{C_2}\)
\(\Rightarrow\Delta OBC\)la tam giac can( tinh chat)
\(\Rightarrow OB=OC\left(dinhnghia\right)\)
xet \(\Delta EOB\)va \(\Delta DOC\)co :
\(\widehat{E_1}=\widehat{C_1}\)
\(\widehat{O_1}=\widehat{O_2}\)(doi dinh)
OB\(=\)OC(c/m tren)
\(\Rightarrow\Delta OEB=\Delta ODC\left(g.c.g\right)\)
\(\Rightarrow OE=OD\)(2 canh tuong ung)
\(\Rightarrow\Delta EOD\)la tam giac can tai O (dpcm)
Cho tam giác ABC cân tại A có \(\widehat A = {56^o}\)(Hình 15)
a) Tính\(\widehat B\), \(\widehat C\)
b) Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh rằng tam giác AMN cân.
c) Chứng minh rằng MN // BC
a) Theo đề bài ta có tam giác ABC cân ở A và \(\widehat A = {56^o}\)
Mà \( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat B = \widehat C = ({180^o} - {56^o}):2 = {62^o}\)
b) Vì tam giác ABC cân tại A nên AB = AC ( định nghĩa tam giác cân )
Mà M, N là trung điểm của AB, AC
Nên AM = AN
Xét tam giác AMN có AM = AN nên AMN là tam giác cân tại A
\( \Rightarrow \widehat M = \widehat N = ({180^o} - {56^o}):2 = {62^o}\)
c) Vì \(\widehat {AMN}=\widehat {ABC}\) (cùng bằng 62°)
Mà chúng ở vị trí đồng vị nên MN⫽BC