Tìm giá trị nguyên của x sao cho 3x chia hết cho x-1
tìm tất cả các giá trị nguyên của x sao cho15 chia hết cho 15 chia hết cho(3x-1)
43. Cho A = 2x(x + 1)(x-3)-(2x-1)(3x-1) + 3(3x² + x + 1).
a) Rút gọn biểu thức A.
b) Tìm thương và dư khi chia A cho 2x − 1.
c) Tìm giá trị nguyên của x để giá trị của biểu thức A chia hết cho giá trị của biểu thức 2x-1.
tìm x nguyên sao cho giá trị biểu thức 3x2 -5x-7 chia hết cho giá trị biêu thức x-3
Ta có:
3x2-5x-7=3x2-9x+4x-12+5=3x(x-3)+4(x-3)+5=(x-3)(3x+4)+5
Nhận thấy: (x-3)(3x+4) luôn chia hết cho x-3 với mọi x
=> Để biểu thức nguyên thì 5 phải chia hết cho x-3
=> x-3 là ước của 5 => x-3=(-5,-1,1,5)
=> x thuộc (-2; 2; 4; 8)
Tìm a, b sao cho
a/ Đa thức x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5
b/ Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Tìm giá trị nguyên của n
a/ Để giá trị của biểu thức 3n3 + 10n2 – 5 chia hết cho giá trị của biểu thức 3n+1.
b/ Để giá trị của biểu thức 10n2 + n – 10 chia hết cho giá trị của biểu thức n – 1 .
giúp tôi với
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
tìm các giá trị nguyên của x để (2x^2+3x+2)chia hết cho (x+1)
2x2+3x+2=2x2+2x+x+2=2x(x+1)+(x+2)
Vì 2x(x+1) chia hết cho x+1
=> x+2 chia hết cho x+1
Ta có: x+2=x+1+1
x nguyên => x+1 nguyên => x+1 thuộc Ư (1)={-1;1}
Với x+1=1 => x=0
Với x+1=-1 => x=-2
Vậy x={0;-2} thì 2x2+3x+2 chia hết cho x+1
Ta có : 2.x2+3x+2 \(⋮\)x+1
=) [ 2.x2+3x+2 - ( x + 1 ) ] \(⋮\)x+1
=) [ 2.x2+3x+2 - 3( x + 1 ) ] \(⋮\)x+1
=) [ 2.x2+3x+2 - (3x + 3 ) ] \(⋮\)x+1
=) 2.x2+3x+2 - 3x - 3 \(⋮\)x+1
=) 2.x2 - 1 \(⋮\)x+1=) [(2.x2 - 1-(x+1)] \(⋮\)x+1=) [(2.x2 - 1-x(x+1)] \(⋮\)x+1=) [(2.x2 - 1-(x2+x)] \(⋮\)x+1=) [(2.x2 - 1-2(x2+x)] \(⋮\)x+1=) [(2.x2 - 1-(2x2+2x)] \(⋮\)x+1=) [(2.x2 - 1-(2x2+2x)] \(⋮\)x+1=) 2.x2 - 1-2x2-2x \(⋮\)x+1=) -1 - 2x \(⋮\)x+1=) [(-1 - 2x+(x+1)] \(⋮\)x+1=) [(-1 - 2x+2(x+1)] \(⋮\)x+1=) [(-1 - 2x+(2x+2)] \(⋮\)x+1=) -1 - 2x+2x+2 \(⋮\)x+1=) 1 \(⋮\)x+1sau đó bạn tìm xtìm các giá trị nguyên của x để (2x^2+3x+2)chia hết cho (x+1)
\(2x^2+3x+2⋮x+1\)
\(\Rightarrow2x^2+2x+x+2⋮x+1\)
\(\Rightarrow2x\left(x+1\right)+\left(x+1\right)+1⋮x+1\)
\(\Rightarrow1⋮x+1\)\(\Rightarrow x+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\hept{\begin{cases}x+1=1\\x+1=-1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x=-2\end{cases}}\)
2x2+3x+2=2x2+2x+x+2=2x(x+1)+(x+2)
Vì 2x(x+1) chia hết cho x+1
=> x+2 chia hết cho x+1
Ta có: x+2=x+1+1
x nguyên => x+1 nguyên => x+1 thuộc Ư (1)={-1;1}
Với x+1=1 => x=0
Với x+1=-1 => x=-2
Vậy x={0;-2} thì 2x2+3x+2 chia hết cho x+1
Tìm các giá trị nguyên của x để:
a) ( 3x - 40 ) chia hết cho ( x + 5 )
b) ( 3x - 8 ) chia hết cho ( x - 4 )
=>3x+15-55 chia hết cho x+5
=> 3(x+5) -55 chia hết cho x+5
vì 3(x+5) chia hết cho x+5 nên 55 cũng chhia hết cho x+5
=> x+5 là ước của 55
=> x+5={1,-1,5,-5,11,-11,55,-55}
xét x+5 =....( đoạn này bạn tự làm nhé)
b) => 3x-12+4 chia hết cho x-4
=> 3(x-4) +4 chia hết cho x-4
vì 3(x-4) chia hết cho x-4 nên 4 chia hết cho x-4
=> x-4 là ước của 4
=> x-4={-1,1,-2,2,-4,4}
xét x-4=.....(bn xét lần lượt nha^^)
tìm giá trị nguyên của x, để:
(2x^2+3x+2) chia hết cho (x+1)
Ta có : \(2x^2+3x+2=\left(2x^2+2x\right)+\left(x+1\right)+1\)
\(=2x\left(x+1\right)+\left(x+1\right)+1=\left(x+1\right)\left(2x+1\right)+1\)
Để \(\left(2x^2+3x+2\right)⋮\left(x+1\right)\)
thì \(1⋮x+1\) hay \(x+1\inƯ\left(1\right)\)
\(\Rightarrow x+1\in\left\{-1,1\right\}\)
\(\Leftrightarrow x\in\left\{-2,0\right\}\)
Vậy : \(x\in\left\{-2,0\right\}\) để \(\left(2x^2+3x+2\right)⋮\left(x+1\right)\)
tìm các giá trị của x thuộc Z sao cho 3x + 2 chia hết cho x-1
3x+2\(⋮\)x-1
<=> 3x - 3 + 5 \(⋮\)x - 1
Vì 3x - 3 \(⋮\)x - 1 mà 3x - 3 + 5 \(⋮\)x - 1 nên:
=> 5 \(⋮\)x - 1
x - 1 \(\in\){ -5;-1;1;5}
=> x \(\in\){ -4;0;2;6}
Vậy x = { -4;0;2;6}