\(\sqrt{x^2-\frac{1}{4x}}+\sqrt{x-\frac{1}{4x}}=x\)
1 - (\(\frac{2}{\sqrt{x}+2}-\frac{5\sqrt{x}}{4x-1}-\frac{1}{1-2\sqrt{x}}\)) : \(\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
\(A=\frac{\sqrt{x-\frac{\sqrt{4x-1}}{2}}+\sqrt{x+\frac{\sqrt{4x-1}}{2}}}{\sqrt{\frac{1}{x^2}-\frac{8}{x}+16}}\)
Rút gọn A.
P = 1 - \(\left(\frac{2}{\sqrt{x}+2}-\frac{5\sqrt{x}}{4x-1}+\frac{1}{1-2\sqrt{x}}\right):\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
rút gọn P
\(P=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}+\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
Rút gọn P
P = \(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}+\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
P = \(\frac{\sqrt{x}-4x-1+4x}{1-4x}:\left(\frac{1+2x-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)
P = \(\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{1+2x-4x-2\sqrt{x}-1+4x}\)
P = \(\frac{\sqrt{x}-1}{2x-2\sqrt{x}}\)
P = \(\frac{\sqrt{x}-1}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)
moi nguoi ruy gon ho voi\(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
\(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\left(ĐK:0\le x\ne\frac{1}{4}\right)\)
\(=\frac{\sqrt{x}-4x+4x-1}{1-4x}:\frac{\left(1+2x\right)+2\sqrt{x}\left(1+2\sqrt{x}\right)+4x-1}{1-4x}\)
\(=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{10x+2\sqrt{x}}=\frac{\sqrt{x}-1}{2\sqrt{x}\left(5\sqrt{x}+1\right)}\)
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\) Tính giá trị BT
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)\)tại giá trị x
Rút gọn A=\(\frac{\sqrt{x-\sqrt{4x-4}}+\sqrt{x+4\sqrt{4x-4}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
Cho x = \(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính giá trị biểu thức:
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-2\sqrt{x}}{\sqrt{2x^2}+2x}\right)^{2017}\) tại giá trị x đã cho
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\).
Tính giá trị phương trình: \(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2017}\)
tại giá trị của x.