ĐKXĐ: ...
Đặt \(\sqrt{x-\frac{1}{4x}}=a>0\Rightarrow-\frac{1}{4x}=a^2-x\)
Pt trở thành:
\(\sqrt{x^2+a^2-x}+a=x\)
\(\Leftrightarrow\sqrt{x^2+a^2-x}=x-a\) (\(x\ge a\))
\(\Rightarrow x^2+a^2-x=x^2+a^2-2ax\)
\(\Leftrightarrow x=2ax\Rightarrow a=\frac{1}{2}\)
\(\Rightarrow x-\frac{1}{4x}=\frac{1}{4}\Leftrightarrow4x^2-x-1=0\Rightarrow x=\frac{1+\sqrt{17}}{8}\)