Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
Cho \(\sqrt{x^2-4x+9}+\sqrt{x^2-4x+8}=2\)
Tính giá trị của biểu thức
\(A=\sqrt{x^2-4x+9}-\sqrt{x^2-4x+8}\)
1/ Rút Gọn với x > 0, x ≠ 1
A = \(\left(\frac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\left(\frac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\right)\)
2/ Giải Phương Trình
a) \(\sqrt{4x-\sqrt{32}}+\sqrt{x-\sqrt{2}}=12\)
b) \(\sqrt{4x-1}+\sqrt{9x-\frac{9}{4}}=15\)
c) \(\sqrt{x^2+x-5}=\sqrt{x-1}\)
d) \(\sqrt{2x^2+3x-13}=x-1\)
3/ Tìm giá trị nhỏ nhất: A = x - \(\sqrt{x}+2\)
4/ Tìm giá trị lớn nhất: B = 3\(\sqrt{x}\) - x + 1
Rút gọn các biểu thức sau:a. \(\frac{x+6\sqrt{x}+9}{x-9}\left(x\ge0;x\ne9\right)\)
b. \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
c. 4x - \(4x-\sqrt{x^2-4x+4}\left(x\ge2\right)\)
Bài 2: Rút gọn biểu thức
1) 2\(\sqrt{a^{2^{ }}}\) với a \(\ge\) 0
2) 3\(\sqrt{\left(a-2\right)^{2_{ }}}\) với a<2
3) \(\sqrt{81a^{4^{ }}}\) + 3a2
4) \(\sqrt{64a^{2^{ }}}+2a\) (a\(\ge\) 0)
5) 3\(\sqrt{9a^{6^{ }}}-6a^3\) ( a bất kỳ)
6) \(\sqrt{a^{2^{ }}+6a+9}+\sqrt{a^{2^{ }}-6a+9}\) ( a bất kì)
7) \(\dfrac{\sqrt{1-2x+x^2}}{x-1}\)
8) A= \(\dfrac{\sqrt{9x^{2^{ }}-6x+1}}{9x^{2^{ }}-1}\)
9) B= 4-x- \(\sqrt{4-4x+x^2}\)
10) C= \(\sqrt{4x^{2^{ }}-4x+1}-\sqrt{4x^{2^{ }}+4x+1}\)
Giải Phương Trình
1/ \(\sqrt{4x^2-4x+1}-3=4\)
2/ \(\frac{3\sqrt{16x+32}}{2}-6\sqrt{\frac{5x+10}{45}}=3\sqrt{9x+18}-10\)
Giải phương trình:
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Bài tập: Rút gọn biểu thức.
\(3\sqrt{x-1}+2\sqrt{4x-4}-3\sqrt{9x-9}+6=0\)