Tìm số nguyên a để (6a+3) chia hết cho (2a+3)
Tìm số nguyên a để (6a+3) chia hết cho (2a+3)
Ta có:6a+3=6a+6-3+(6a+6)-3
=3(2a+3)-3
Vì (2a+3) chia hết cho (2a+3)
=>3.(2a+3) chia hết cho 2a+3
Vậy a thuộc Z
Tìm số nguyên a để 4a3+14a2+6a+12 chia hết cho 2a+1
a)Tìm số nguyên n sao cho 2n-1laf bội của n+3
b)Tìm tất cả các số nguyên a biết:6a+1 chia hết cho 2a-1
a,2n-1 chia hết cho n+3
=> 2n+6-7 chia hết cho n+3
mà 2n+6 chia hết cho n+3
=>7 chia hết cho n+3
=> n-3 E Ư(7)
n-3={-7;-1;1;7}
=>n={-4;2;4;10}
b,6a+1 chia hết cho 2a-1
=>6a-3+4 chia hết cho 2a-1
mà 6a-3 chia hết cho 2a-1
=>4 chia hết cho 2a-1
=> 2a-1 E Ư(4)
2a-1={-4;-2;-1;1;2;4}
2a={-3;-1;0;2;3;5}
mà a là số nguyên
=> a={0;1}
Tìm số nguyên a sao cho 4a3+14a2+6a+12 chia hết cho 2a+1
tìm số nguyên a biết 4a3 + 14a2 + 6a + 12 chia hết cho 1 +2a
tìm số nguyên a biết 4a3 + 14a2 + 6a + 12 chia hết cho 1 +2a
Ta xét : \(\frac{4a^3+14a^2+6a+12}{1+2a}=\frac{2a^2\left(2a+1\right)+6a\left(2a+1\right)+12}{1+2a}=2a^2+6a+\frac{12}{1+2a}\)
Để \(\left(4a^3+14a^2+6a+12\right)⋮\left(1+2a\right)\) thì \(1+2a\inƯ\left(12\right)\)
Bạn tự liệt kê
Ta có
\(4a^3+14a^2+6a+12\)
\(=a\left(4a^2+14a+6\right)+12\)
\(=a\left[\left(4a^2+2a\right)+\left(12a+6\right)\right]+12\)
\(=a\left[2a\left(2a+1\right)+6\left(2a+1\right)\right]+12\)
\(=a\left(2a+1\right)\left(2a+6\right)+12\)
Vì \(4a^3+14a^2+6a+12\) chia hết cho 2a+1
\(=>a\left(2a+1\right)\left(2a+6\right)+12\) chia hết cho 2a+1
Mà a(2a+1)(2a+6) chia hết cho 2a+1
=> 12 chia hết cho 2a+1
=> \(2a+1\inƯ_{12}\)
Mặt khác 2a+1 lẻ
=> \(2a+1\in\left\{1;3;-1;-3\right\}\)
=> \(a\in\left\{0;1;-1;-2\right\}\)
Vậy \(a\in\left\{0;1;-1;-2\right\}\)
1.Tìm STN a để các số sau nguyên tố cung nhau
a)4a+3 và 2a+3
b)7a+4 và 5a+6
c)8a+3 và 3a+1
d)6a+1 và 5a-3
e)9a+4 và 4a+3
g)5a+4 và 6a+5
h)9a+24 và 3a+4
i)7a+13 và 2a+4
2.Tìm STN a biết:
a)5a+1 chia hết cho 7
b)2a+9 chia hết cho 11
c)25a+3 chia hết cho 53
a; 4a + 3 và 2a + 3
Gọi ƯCLN(4a + 3; 2a + 3) = d
Theo bài ra ta có:
\(\left\{{}\begin{matrix}4a+3⋮d\\2a+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+3-4a-6⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\\left(4a-4a\right)+\left(2-6\right)⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4⋮d\end{matrix}\right.\) ⇒ d \(\in\) Ư(4) = {1; 2; 4}
Nếu d = 2 ⇒ 4a + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lý)
Nếu d = 4 ⇒ 4a + 3 ⋮ 4 ⇒ 3 ⋮ 4 (vô lý)
Vậy d = 1 ⇒ (4a + 3; 2a + 3) = 1
Hay 4a + 3 và 2a + 3 là hai số nguyên tố cùng nhau với mọi giá trị của a.
Tìm số nguyên a thỏa mãn : (6a-1) chia hết cho (2a+1)
Ta có : \(6a-1⋮2a+1\)
\(\Rightarrow6a+3-4⋮2a+1\)
\(\Rightarrow3\left(2a+1\right)-4⋮2a+1\)
Mà 3(2a+1)\(⋮\)2a+1
\(\Rightarrow4⋮2a+1\)
\(\Rightarrow2a+1\in\left\{\pm1;\pm2;\pm4\right\}\)
Vì 2a+1 là số lẻ nên 2a+1 bằng -1 hoặc 1
\(\Rightarrow a\in\left\{0;-1\right\}\)
tìm số nguyên a biết 11 chia hết cho 2a +9
tìm số nguyên n để n+ 2 chia hết cho n-3
a, \(11⋮2a+9\Rightarrow2a+9\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
2a + 9 | 1 | -1 | 11 | -11 |
2a | -8 | -10 | 2 | -20 |
a | -4 | -5 | 1 | -10 |
b, \(n+2⋮n-3\Leftrightarrow n-3+5⋮n-3\Leftrightarrow5⋮n-3\)
làm tương tự như trên