Tính (7+1)×(7+2)×(7+3)×...×(7+2019)×(7+2020)
tính tổng sau : 7^2022-7^2021+7^2020-7^2019+...+7^2-7
\(A=7^{2022}-7^{2021}+7^{2020}-7^{2019}+...+7^2-7\)
\(\Rightarrow7A=7^{2023}-7^{2022}+7^{2021}-...+7^3-7^2\)
\(\Rightarrow8A=A+7A=7^{2022}-7^{2021}+...+7^2-7+7^{2023}-7^{2022}+...+7^3-7^2=7^{2023}-7\)
\(\Rightarrow A=\dfrac{7^{2023}-7}{8}\)
Tính
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + 9 - ........... + 2019
B = 1 + 2 - 3 + 4 - 5 + 6 - 7 + .............. + 2017 + 2018 - 2019 + 2020
+Tìm số số hạng
+ Tình cặp. Xem dư số nào mà k cộng được vs số nào ( VD 100 )
+ Lấy số dư cộng số cặp ( VD : 50+49.100)
+ Tìm kết quả .
Dễ mà
b1: tìm số các số hạng trong tổng đại số trên
b2:nhóm các số có tổng = nhau lại như 1-2=2-3=....=2017-2018=-1. còn thừa số 2019.có tất cả 1009 nhóm có giá trị là -1
b3: lấy -1.1009 vì có 1009 nhóm. sau đó cộng với 2019
b4: kết quả là 1010
ý b cậu làm tương tự nhé( để ý dấu -)
Cho A=1+7+7^2+7^3+…+7^2019+7^2020. Tìm số dư của A khi chia A cho 57
Giúp mình với!
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\\ \left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\\ \left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\\ 57\left(1+7^3+7^6+...+7^{2018}\right)⋮57\)
A=1+7+72+...+72019+72020
=1+(7+72+73)+(74+75+76)+...+(72018+72019+72020)
=1+7(1+7+72)+74(1+7+72)+...+72018(1+7+72)
=1+7x57+74x57+...+72018x57=1+57(7+74+...+72018)
=>A chia cho 57 dư 1.vì 57(7+74+...+72018)⋮57.
1. 2019/2020-(2019/2020-2020/2021)
2.2/9+7/9 :(42/5-7/5
3.a)3/4+x/4=5/8
4./3x+1/-1/4=-1/4
1. \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}=\dfrac{2020}{2021}\)
Giải:
1) \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=\left(\dfrac{2019}{2020}-\dfrac{2019}{2020}\right)+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}\)
\(=\dfrac{2020}{2021}\)
2) \(\dfrac{2}{9}+\dfrac{7}{9}:\left(\dfrac{42}{5}-\dfrac{7}{5}\right)\)
\(=\dfrac{2}{9}+\dfrac{7}{9}:7\)
\(=\dfrac{2}{9}+\dfrac{1}{9}\)
\(=\dfrac{1}{3}\)
3) \(\dfrac{3}{4}+\dfrac{x}{4}=\dfrac{5}{8}\)
\(\dfrac{x}{4}=\dfrac{5}{8}-\dfrac{3}{4}\)
\(\dfrac{x}{4}=\dfrac{-1}{8}\)
\(\Rightarrow x=\dfrac{4.-1}{8}=\dfrac{-1}{2}\)
4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\)
\(\left|3x-1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\)
\(\left|3x-1\right|=0\)
\(3x-1=0\)
\(3x=0+1\)
\(3x=1\)
\(x=1:3\)
\(x=\dfrac{1}{3}\)
Chúc bạn học tốt!
4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\)
\(\left|3x+1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\)
\(\left|3x+1\right|=0\)
\(3x+1=0\)
\(3x=0-1\)
\(3x=-1\)
\(x=-1:3\)
\(x=\dfrac{-1}{3}\)
Bài 1: Tính nhanh
A = 1 - 3 + 5 - 7+...- 2019 + 2021 - 2023
B = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +...+ 2017 + 2018 + - 2019 - 2020
Help me :v
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
\(B=1+2-3-4+5+6-7-8+......+2017+2018-2019-2020\)
\(B=\left(1+2-3-4\right)+\left(5+6-7-8\right)+.....+\left(2017+2018-2019-2020\right)\)
\(B=-4+\left(-4\right)+.....+\left(-4\right)\left(505 cặp\right)\)
\(B=-4.505\)
\(B=-2020\)
tính nhanh: (1+3+5+7+...+2019+2021)-(2+4+6+8+...+2020)
(1+3+5+7+...+2019+2021)
A=1−3+5−7+......−2019+2021−2023
A=(1−3)+(5−7)+....+(2021−2023)A=(1−3)+(5−7)+....+(2021−2023)
A=−2+(−2)+....+(−2)(506)A=−2+(−2)+....+(−2)(506cặp)
a=−2.506A=−2.506
A=−1012A=−1012
(2+4+6+8+...+2020)
B=2+4+6+8+...+2018+2020
B = 2(1 + 2 + 3 + 4 + ... + 1009 + 1010)
B = 2 . (1011 . 1010 : 2)
B = 2 . 510555
B = 1 021 110
(1+3+5+7+......+2019+2021)-(2+4+6+8+.....+2020)
\(=\dfrac{\left(1+2021\right).\left[\left(2021-1\right):2+1\right]}{2}-\dfrac{\left(2+2020\right).\left[\left(2020-2\right):2+1\right]}{2}\)
\(=1011\)
1+2-3-4+5+6-7-7+...+2018-2019-2020+2021
Sửa đề :
1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 - ... + 2018 - 2019 - 2020 + 2021
= 1 + ( 2 - 3 - 4 + 5 ) + ( 6 - 7 - 8 + 9 ) + ... + ( 2018 - 2019 - 2020 + 2021 )
= 1 + 0 + 0 + ... + 0
= 1
Cho \(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)
Tìm số dư khi chia A cho 19.
Ta có :
\(A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\)
\(=\left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=57\cdot\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=19\cdot3\cdot\left(1+7^3+7^6+...+7^{2018}\right)⋮19\) (đpcm)
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)
\(\Leftrightarrow A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+....+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(\Leftrightarrow A=\left(1+7+49\right)+7^3\left(1+7+49\right)+...+7^{2018}\left(1+7+49\right)\)
\(\Leftrightarrow A=57+7^3\cdot57+...+7^{2018}\cdot57\)
\(\Leftrightarrow A=57\left(1+7^3+....+7^{2018}\right)\)
\(\Leftrightarrow A=3\cdot19\left(1+7^3+...+7^{2018}\right)\)
=> A chia 19 dư 0
Ta có:A=1+(7+72+73)+...+(72018+72019+72020)
A=1+[7(1+7+49)+...+72018(1+7+49)]
A=1+[57(7+72+...+72018)]
Do 57(7+72+...+72018) chia hết cho 19 nên 1+[57(7+72+..+72018)] chia 19 dư 1
So sánh A và B
A=\(\dfrac{4-7^{2020}}{7^{2020}}\)+\(\dfrac{5+7^{2021}}{7^{2021}}\)
B=\(\dfrac{1}{7^{2019}}\)
Ta có:
\(A=\dfrac{7\left(4-7^{2020}\right)}{7^{2021}}+\dfrac{5+7^{2021}}{7^{2021}}\)
\(A=\dfrac{28-7^{2021}+5+7^{2021}}{7^{2021}}=\dfrac{33}{7^{2021}}\)
Ta có: \(B=\dfrac{7^2}{7^{2021}}=\dfrac{49}{7^{2021}}\)
=> B>A