Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thu Thảo
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2020 lúc 17:51

\(M=\frac{-4\left(x-8\sqrt{x}+16\right)+4x-28\sqrt{x}+49}{\left(\sqrt{x}-4\right)^2}=-4+\frac{\left(2\sqrt{x}-7\right)^2}{\left(\sqrt{x}-4\right)^2}\ge-4\)

Dấu "=" xảy ra khi \(2\sqrt{x}=7\Rightarrow x=\frac{49}{4}\)

Khách vãng lai đã xóa
Mei Mei
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết
Phạm Thị Thùy Linh
28 tháng 6 2019 lúc 20:13

\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)

\(=\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)}{\sqrt{x}^3-8}-\frac{\left(x-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}^3-8}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right)\)\(:\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)

\(=\frac{\sqrt{x}^3+2x+4\sqrt{x}-\sqrt{x}^3+2x+3\sqrt{x}-6-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}.\frac{\left(x+2\sqrt{x}+4\right)}{\sqrt{x}+7}\)

\(=\)\(\frac{\left(4x-16\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}=\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)

Sai đề không ?

A= \(\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)-\left(x-3\right)\left(\sqrt{x}-2\right)-7\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}\right)\)     .  \(\frac{x+2\sqrt{x}+4}{\sqrt{x}+7}\)

\(\frac{x\sqrt{x}+2x+4\sqrt{x}-x\sqrt{x}+3\sqrt{x}-6+2x-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)

\(\frac{4x-16}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)

=\(\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)

\(\frac{4\left(\sqrt{x}+2\right)}{\sqrt{x}+7}\)

\(\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)

#mã mã#

Phạm Thị Thùy Linh
28 tháng 6 2019 lúc 20:42

Cám ơn bạn mã mã , để mình làm nốt nhé :

\(A=\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)

Để \(A>2\Rightarrow\frac{4\sqrt{x}+8}{\sqrt{x}+7}>2\)

\(\Rightarrow\frac{4\sqrt{x}+8}{\sqrt{x}+7}-2>0\)

\(\Rightarrow\frac{4\sqrt{x}+8-2\sqrt{x}-14}{\sqrt{x}+7}>0\)

\(\Rightarrow\frac{2\sqrt{x}-6}{\sqrt{x}+7}>0\)

Vì \(\sqrt{x}>0\Rightarrow\sqrt{x}+7>0\)\(\Rightarrow A>0\Leftrightarrow2\sqrt{x}-6>0\)

\(\Rightarrow2\left(\sqrt{x}-3\right)>0\Rightarrow\sqrt{x}-3>0\)

\(\Leftrightarrow\sqrt{x}>3\Rightarrow\sqrt{x}>\sqrt{9}\Rightarrow x>9\)

Vậy để \(A>2\Leftrightarrow x>9\)

Xinnmeii (Hân)
Xem chi tiết
Tien luc
Xem chi tiết
Quý Đào
Xem chi tiết
Nguyễn Thị Thảo Xuyên
Xem chi tiết
nho quả
Xem chi tiết
Ngân Vũ Thị
19 tháng 7 2019 lúc 12:20

undefinedundefinedundefined

Nguyễn Thành Trương
19 tháng 7 2019 lúc 14:08

\(1)\left( {4 + \sqrt {15} } \right)\left( {\sqrt {10} - \sqrt 6 } \right)\left( {\sqrt {4 - \sqrt {15} } } \right)\\ = \left( {4\sqrt {10} - 4\sqrt 6 + \sqrt {150} - \sqrt {90} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {4\sqrt {10} - 4\sqrt 6 + 5\sqrt 6 - 3\sqrt {10} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {\sqrt {10} + \sqrt 6 } \right)\sqrt {4 - \sqrt {15} } \\ = \sqrt {10\left( {4 - \sqrt {15} } \right)} + \sqrt {6\left( {4 - \sqrt {15} } \right)} \\ = \sqrt {40 - 10\sqrt {15} } + \sqrt {24 - 6\sqrt {15} } \\ = \sqrt {{{\left( {5 - \sqrt {15} } \right)}^2}} + \sqrt {{{\left( {3 - \sqrt {15} } \right)}^2}} \\ = 5 - \sqrt {15} + \sqrt {15} - 3 = 2\)

2) Áp dụng bất đẳng thức AM - GM ta có

\(\dfrac{{{x^2}}}{{y + z}} + \dfrac{{y + z}}{4} \ge 2\sqrt {\dfrac{{{x^2}}}{{y + z}}.\dfrac{{y + z}}{4}} = x(1)\)

Hoàn toàn tương tự:

\(\dfrac{{{y^2}}}{{z + x}} + \dfrac{{z + x}}{4} \ge y\left( 2 \right)\\ \dfrac{{{z^2}}}{{x + y}} + \dfrac{{x + y}}{4} \ge z\left( 3 \right) \)

Từ (1), (2), (3) ta có ngay:\(\left(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\right)+ \left(\dfrac{y^2}{z+x}+\dfrac{z+x}{4}\right)+\left( \dfrac{z^2}{x+y} +\dfrac{x+y}{4}\right)\geqslant x+y+z\\ \iff\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant \dfrac{x+y+z}{2} \)

Chú ý rằng \(x+y+z=2\), ta có ngay\(\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant 1\)

Vậy giá trị nhỏ nhất của $P$ là $1$, đạt được khi $x=y=z=\dfrac{2}{3}$.

Haizzz bị lỗi công thức suốt :((

Nguyễn Thành Trương
19 tháng 7 2019 lúc 13:57

\(% MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGceaqabeaacaaIXa % GaaiykamaabmaabaGaaGinaiabgUcaRmaakaaabaGaaGymaiaaiwda % aSqabaaakiaawIcacaGLPaaadaqadaqaamaakaaabaGaaGymaiaaic % daaSqabaGccqGHsisldaGcaaqaaiaaiAdaaSqabaaakiaawIcacaGL % PaaadaqadaqaamaakaaabaGaaGinaiabgkHiTmaakaaabaGaaGymai % aaiwdaaSqabaaabeaaaOGaayjkaiaawMcaaaqaaiabg2da9maabmaa % baGaaGinamaakaaabaGaaGymaiaaicdaaSqabaGccqGHsislcaaI0a % WaaOaaaeaacaaI2aaaleqaaOGaey4kaSYaaOaaaeaacaaIXaGaaGyn % aiaaicdaaSqabaGccqGHsisldaGcaaqaaiaaiMdacaaIWaaaleqaaa % GccaGLOaGaayzkaaWaaOaaaeaacaaI0aGaeyOeI0YaaOaaaeaacaaI % XaGaaGynaaWcbeaaaeqaaaGcbaGaeyypa0ZaaeWaaeaacaaI0aWaaO % aaaeaacaaIXaGaaGimaaWcbeaakiabgkHiTiaaisdadaGcaaqaaiaa % iAdaaSqabaGccqGHRaWkcaaI1aWaaOaaaeaacaaI2aaaleqaaOGaey % OeI0IaaG4mamaakaaabaGaaGymaiaaicdaaSqabaaakiaawIcacaGL % PaaadaGcaaqaaiaaisdacqGHsisldaGcaaqaaiaaigdacaaI1aaale % qaaaqabaaakeaacqGH9aqpdaqadaqaamaakaaabaGaaGymaiaaicda % aSqabaGccqGHRaWkdaGcaaqaaiaaiAdaaSqabaaakiaawIcacaGLPa % aadaGcaaqaaiaaisdacqGHsisldaGcaaqaaiaaigdacaaI1aaaleqa % aaqabaaakeaacqGH9aqpdaGcaaqaaiaaigdacaaIWaWaaeWaaeaaca % aI0aGaeyOeI0YaaOaaaeaacaaIXaGaaGynaaWcbeaaaOGaayjkaiaa % wMcaaaWcbeaakiabgUcaRmaakaaabaGaaGOnamaabmaabaGaaGinai % abgkHiTmaakaaabaGaaGymaiaaiwdaaSqabaaakiaawIcacaGLPaaa 1)\left( {4 + \sqrt {15} } \right)\left( {\sqrt {10} - \sqrt 6 } \right)\left( {\sqrt {4 - \sqrt {15} } } \right)\\ = \left( {4\sqrt {10} - 4\sqrt 6 + \sqrt {150} - \sqrt {90} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {4\sqrt {10} - 4\sqrt 6 + 5\sqrt 6 - 3\sqrt {10} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {\sqrt {10} + \sqrt 6 } \right)\sqrt {4 - \sqrt {15} } \\ = \sqrt {10\left( {4 - \sqrt {15} } \right)} + \sqrt {6\left( {4 - \sqrt {15} } \right)} \\ = \sqrt {40 - 10\sqrt {15} } + \sqrt {24 - 6\sqrt {15} } \\ = \sqrt {{{\left( {5 - \sqrt {15} } \right)}^2}} + \sqrt {{{\left( {3 - \sqrt {15} } \right)}^2}} \\ = 5 - \sqrt {15} + \sqrt {15} - 3 = 2 \)

2) Áp dụng bất đẳng thức AM - GM ta có

\begin{equation} \label{eq:1} \dfrac{x^2}{y+z}+\dfrac{y+z}{4}\geqslant 2\sqrt{\dfrac{x^2}{y+z}\cdot \dfrac{y+z}{4}}=x \end{equation}

Hoàn toàn tương tự:

\begin{align} \label{eq:2} \dfrac{y^2}{z+x}+\dfrac{z+x}{4}\geqslant y \\ \label{eq:3} \dfrac{z^2}{x+y}+\dfrac{x+y}{4}\geqslant z \end{align}

Từ \eqref{eq:1}, \eqref{eq:2}, \eqref{eq:3} ta có ngay

\[\left(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\right)+ \left(\dfrac{y^2}{z+x}+\dfrac{z+x}{4}\right)+\left( \dfrac{z^2}{x+y} +\dfrac{x+y}{4}\right)\geqslant x+y+z\]

\[\iff\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant \dfrac{x+y+z}{2}\]

Chú ý rằng $x+y+z=2$, ta có ngay

\[\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant 1\]

Vậy giá trị nhỏ nhất của $P$ là $1$, đạt được khi $x=y=z=\dfrac{2}{3}$.

lan vũ
Xem chi tiết
alibaba nguyễn
6 tháng 6 2018 lúc 10:02

Điều kiện có 2 nghiệm phân biệt tự làm nha

Theo vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)

\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)

\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)

\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)

Làm nốt nhé

NắngNứng 範城
6 tháng 6 2018 lúc 7:51

Câu 1:

M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)

=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)

=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)

\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)

\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)

alibaba nguyễn
6 tháng 6 2018 lúc 9:58

2/ \(S=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)