c) e) 1/3 + 1 /6 + 𝑥 /4042 = 1
rút gọn phân thức
a)
(𝑥 − 1)^2/𝑥^2 − 1
b)
x^2 − 16/4x − x^2
c)
x^2 + 6x + 9/2x + 6
d)
x^2 + x/x^2 + 4x + 3
e)
𝑥^2 − 𝑥 + 1/𝑥^3 + 1
f)
(x + y)^2 − z^2/x + y + z
\(a,\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\\ b,\dfrac{x^2-16}{4x-x^2}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(4-x\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(x+4\right)}{x}\\ c,\dfrac{x^2+6x+9}{2x+6}=\dfrac{\left(x+3\right)^2}{2\left(x+3\right)}=\dfrac{x+3}{2}\)
\(d,\dfrac{x^2+x}{x^2+4x+3}=\dfrac{x\left(x+1\right)}{\left(x^2+x\right)+\left(3x+3\right)}=\dfrac{x\left(x+1\right)}{x\left(x+1\right)+3\left(x+1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}=\dfrac{x}{x+3}\)
\(e,\dfrac{x^2-x+1}{x^3+1}=\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x+1}\\ f,\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)
a) 2+3𝑥=−15−19
b) 2𝑥−5=−17+12
c) 10−𝑥−5=−5−7−11
d) |𝑥|−3=0
e) (7−|𝑥|).(2𝑥−4)=0
f) −10−(𝑥−5)+(3−𝑥)=−8
g) 10+3(𝑥−1)=10+6𝑥
h) (𝑥+1)(𝑥−2)=0
Bài 3. Tìm các số nguyên x và y sao cho:
a) (𝑥+2)(𝑦−1)=3
b) (3−𝑥)(𝑥𝑦+5)=−1
a) 2+3𝑥=−15−19
3x= -15 - 19 -2
3x = -36
x= -12
b) 2𝑥−5=−17+12
2x = -17 + 12 + 5
2x = 0
x = 0
c) 10−𝑥−5=−5−7−11
-x = -5 - 7 - 11 - 10 + 5
-x = -28
x = 28
d) |𝑥|−3=0
|x|= 3
x = \(\pm\)3
e) (7−|𝑥|).(2𝑥−4)=0
th1 : ( 7 - | x| ) = 0
|x|= 7
x=\(\pm\)7
th2: ( 2x-4) = 0
2x = 4
x= 2
f) −10−(𝑥−5)+(3−𝑥)=−8
-10 - x + 5 + 3 - x = -8
-10 + 5 + 3 + 8 = 2x
2x= 6
x = 3
g) 10+3(𝑥−1)=10+6𝑥
10 + 3x - 3 = 10 + 6x
3x - 6x = 10 - 10 + 3
-3x = 3
x= -1
h) (𝑥+1)(𝑥−2)=0
th1: x+1= 0
x = -1
x-2=0
x=2
hok tốt!!!
1) (𝑥 + 7)2 − 𝑥(𝑥 − 3) = 15 2) (2𝑥 + 3)2 − 4𝑥(𝑥 + 2) = 13 3) (3 − 𝑥)2 − (𝑥 − 2)(𝑥 + 1) = 21 4) (𝑥 − 2)2 − (𝑥 + 1)(𝑥 + 3) = −7 5) (𝑥 + 3)(4 − 𝑥) + (𝑥 + 1)(𝑥 − 1) = 10 6) (𝑥 + 1)2 − (𝑥 − 2)(𝑥 + 2) = 13 7) (5𝑥 − 1)(5𝑥 + 1) = 25𝑥2 − 7𝑥 + 15 8) (2𝑥 − 3)2 = 4(𝑥 − 3)(𝑥 + 3) − 4 . Số 2 ở sau là mũ 2 nhé, giải giúp mình vs
???????????????????????
BÀI 3: Tìm x, biết.
𝑎) (𝑥−1)3+3𝑥(𝑥−4)+1=0
𝑏) (𝑥−1)(𝑥2+𝑥+1)=𝑥2(𝑥−9)+2𝑥2+6
a) \(\Rightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)
\(\Rightarrow x^3-9x=0\)
\(\Rightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x^3-1=x^3-9x^2+2x^2+6\)
\(\Rightarrow7x^2=7\)
\(\Rightarrow x^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Tìm giá trị lớn nhất của biểu thức A bằng
𝐵𝑖ể𝑢 𝑡ℎứ𝑐 𝐴=(𝑥√+1𝑥𝑦√+1+𝑥𝑦√+𝑥√1−𝑥𝑦√+1):(1−𝑥𝑦√+𝑥√𝑥𝑦√−1−𝑥√+1𝑥𝑦√+1) 𝑏𝑖ế𝑡1𝑥√+1𝑦√=6
A.9.
B.3.
C.18.
D.36.
Tìm x , biết rằng
a) 𝑥3 - 64𝑥 = 0
b) 𝑥3 - 4𝑥2 = -4𝑥
c)𝑥2 - 16 - (𝑥 - 4) = 0
d)(2𝑥 + 1)2 = (3 + 𝑥)
e)𝑥3 - 6𝑥2 + 12𝑥 - 8 = 0
f)𝑥3 - 7𝑥 - 6 = 0
a) x³ - 64x = 0
x(x² - 64) = 0
x(x - 8)(x + 8) = 0
x = 0 hoặc x - 8 = 0 hoặc x + 8 = 0
*) x - 8 = 0
x = 8
*) x + 8 = 0
x = -8
Vậy x = -8; x = 0; x = 8
b) x³ - 4x² = -4x
x³ - 4x² + 4x = 0
x(x² - 4x + 4) = 0
x(x - 2)² = 0
x = 0 hoặc (x - 2)² = 0
*) (x - 2)² = 0
x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) x² - 16 - (x - 4) = 0
(x - 4)(x + 4) - (x - 4) = 0
(x - 4)(x + 4 - 1) = 0
(x - 4)(x + 3) = 0
x - 4 = 0 hoặc x + 3 = 0
*) x - 4 = 0
x = 4
*) x + 3 = 0
x = -3
Vậy x = -3; x = 4
d) (2x + 1)² = (3 + x)²
(2x + 1)² - (3 + x)² = 0
(2x + 1 - 3 - x)(2x + 1 + 3 + x) = 0
(x - 2)(3x + 4) = 0
x - 2 = 0 hoặc 3x + 4 = 0
*) x - 2 = 0
x = 2
*) 3x + 4 = 0
3x = -4
x = -4/3
Vậy x = -4/3; x = 2
e) x³ - 6x² + 12x - 8 = 0
(x - 2)³ = 0
x - 2 = 0
x = 2
f) x³ - 7x - 6 = 0
x³ + 2x² - 2x² - 4x - 3x - 6 = 0
(x³ + 2x²) - (2x² + 4x) - (3x + 6) = 0
x²(x + 2) - 2x(x + 2) - 3(x + 2) = 0
(x + 2)(x² - 2x - 3) = 0
(x + 2)(x² + x - 3x - 3) = 0
(x + 2)[(x² + x) - (3x + 3)] = 0
(x + 2)[x(x + 1) - 3(x + 1)] = 0
(x + 2)(x + 1)(x - 3) = 0
x + 2 = 0 hoặc x + 1 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x + 1 = 0
x = -1
*) x - 3 = 0
x = 3
Vậy x = -1; x = -1; x = 3
a,x\(^3\)-64=0
x\(^3\) =64
=>x=3
b,x\(^3\)-4x\(^2\)=-4x
x\(^3\)-4x\(^2\)+4x=0
x(x\(^2\)-4x+4)=0
x(x-2)\(^2\)=)
TH1:x=0
TH2:x-2=0
=>x=2
c,x\(^2\)-16-(x-4)=0
(x+4)(x-4)-(x-4)=0
(x-4)(x+4-1)=0
(x-4)(x+3)=0
TH1:x-4=0
=>x=4
TH2:x+3=0
=>x=-3
d,(2x+1).2=3+x
4x+2-3-x=0
3x-1=0
x=\(\dfrac{1}{3}\)
e,x\(^3\)-6x\(^2\)+12x-8=0
(x-2)\(^3\)=0
=>x-2=0
=>x=2
f,x\(^3\)-7x+6=0
x\(^3\)-x-6x+6=0
x(x\(^2\)-1)-6(x-1)=0
x(x+1)(x-1)-6(x-1)=0
(x-1)(x\(^2\)+x-6)=0
TH1:x-1=0
=>x=1
TH2:x\(^2\)+x-6=0
x\(^2\)+3x-2x-6=0
x(x+3)-2(x+3)=0
(x+3)(x-2)=0
=>x+3=0 =>x-2=0
+>x=-3 =>x=2
d,(2x+1)\(^2\)=(3+x)\(^2\)
4x\(^2\)+4x+1-9-6x-x\(^2\)=0
3x\(^2\)-2x-8=0
3x\(^2\)-6x+4x-8=0
3x(x-2)+4(x-2)=0
(3x+4)(x-2)=0
TH1:3x+4=0 TH2:x-2=0
=>x=\(\dfrac{-4}{3}\) =>x=2
Tìm x, biết.
𝑎) (𝑥−1)3+3𝑥(𝑥−4)+1=0
𝑏) (𝑥−1)(𝑥2+𝑥+1)=𝑥2(𝑥−9)+2𝑥2+6
8: Giải phương trình (𝑥 + 1)√𝑥 2 − 2𝑥 + 3 = 𝑥 2 + 1 . Tính tổng bình phương các nghiệm A. 6 B. 3 + √8 C. 8 D. 4 + √12
giup mik nha
1/3 + 1/6 + x/4042=1
1/3 + 1/6 + \(\dfrac{x}{4042}=1\)
\(\Leftrightarrow\dfrac{x}{4042}=1-\dfrac{1}{3}-\dfrac{1}{6}\)
\(\dfrac{x}{4042}=\dfrac{6}{6}-\dfrac{2}{6}-\dfrac{1}{6}\)
\(\dfrac{x}{4042}=\dfrac{3}{6}\)
\(x=\dfrac{3}{6}\cdot4042\)
\(x=2021\)
1) Làm tính nhân
a) 𝑥.(𝑥^2–5)
b) 3𝑥𝑦(𝑥^2−2𝑥^2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥^2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
Bài 1:
a. $x(x^2-5)=x^3-5x$
b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$
c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$
d.
$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$
Bài 2:
a.
\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)
b.
\((x-3)^2=x^2-6x+9\)
c.
\((4+3x)^2=9x^2+24x+16\)
d.
\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)
e.
\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)
\(=125x^3+225x^2y+135xy^2+27y^3\)
f.
\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)
Bài 3:
a. $x^2+2x=x(x+2)$
b. $x^2-6x+9=x^2-2.3x+3^2=(x-3)^2$
c. $5(x-y)-y(y-x)=5(x-y)+y(x-y)=(x-y)(5+y)$
d. $2x-y^2+2xy-y=(2x-y)+(2xy-y^2)=(2x-y)-y(2x-y)=(2x-y)(1-y)$
e.
$6x^3y^4+12x^2y^3-18x^3y^2=6x^2y^2(xy^2+2y-3x)$