\(\frac{4x^2-3x-7}{A}=\frac{4x-7}{2x+3}\)Tìm A
tìm A, B, C, D
a, \(\frac{64x^3+1}{16x^2-2}=\frac{A}{4x-1}\)
b, \(\frac{4x^2+3x-7}{B}=\frac{4x+7}{2x-3}\)
c, \(\frac{C}{3x^2-7x+4}=\frac{3-2x}{x-\frac{4}{3}}\)
d, \(\frac{2x-y-1}{4x-2y}=\frac{4x^2-2x-y^2-y}{D}\)
tìm đa thức A,B,C,D
\(\frac{64x^3+1}{16x^2-1}=\frac{A}{4x-1}\)
\(\frac{4x^2+3x-7}{B}=\frac{4x+ 7}{2x-3}\)
\(\frac{64x^3+1}{16x^2-1}=\frac{A}{4x-1}\left(x\ne\pm\frac{1}{4}\right)\)
\(\Leftrightarrow\frac{\left(4x+1\right)\left(16x^2+4x+1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{A}{4x-1}\)
\(\Leftrightarrow\frac{\left(16x^2+4x+1\right)}{\left(4x-1\right)}=\frac{A}{4x-1}\)
Vậy \(A=\left(16x^2+4x+1\right)\)
\(\frac{4x^2+3x-7}{B}=\frac{4x+7}{2x-3}\left(x\ne\frac{3}{2}\right)\)
\(\Leftrightarrow\frac{4x^2+7x-4x-7}{B}=\frac{4x+7}{2x-3}\)
\(\Leftrightarrow\frac{x\left(4x+7\right)-\left(4x+7\right)}{B}=\frac{4x+7}{2x-3}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{B}=\frac{4x+7}{2x-3}\)
\(\Leftrightarrow\frac{\left(x-1\right)}{B}=\frac{1}{2x-3}\)
\(\Leftrightarrow B=\left(x-1\right)\left(2x-3\right)=2x^2-5x+3\)
Tìm x:\(a,\frac{6x-5}{-7}=\frac{5x-3}{-5}\\ b,\frac{12-7x}{-13}=\frac{4-3x}{-5}\\ c,\frac{2x+4}{7}=\frac{4x-2}{15}\)
a) \(\frac{6x-5}{-7}=\frac{5x-3}{-5}\)
=> -5(6x - 5) = -7(5x - 3)
=> -30x + 25 = -35x + 21
=> -30x + 25 + 35x - 21 = 0
=> (-30x + 35x) + (25 - 21) = 0
=> 5x + 4 = 0
=> 5x = -4
=> x = -4/5
b) \(\frac{12-7x}{-13}=\frac{4-3x}{-5}\)
=> -5(12 - 7x) = -13(4 - 3x)
=> -60 + 35x = -52 + 39x
=> -60 + 35x + 52 - 39x = 0
=> (-60 + 52) + (35x - 39x) = 0
=> -8 - 4x = 0
=> -8 = 4x
=> x = -2
c) \(\frac{2x+4}{7}=\frac{4x-2}{15}\)
=> 15(2x + 4) = 7(4x - 2)
=> 30x + 60 = 28x - 14
=> 30x + 60 - 28x + 14 = 0
=> 2x + 74 = 0
=> 2x = -74
=> x = -37
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\frac{2x}{2x^2-5x+3}+\frac{13x}{2x^2+x+3}\)
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x
\(Tìm\)\(A\)TRONG mỗi phân thức PHÂN THỨC SAU
\(\frac{4x^2-3x-7}{A}=\frac{4x-7}{2x+3}.\)
giải. Ta có : \(\left(4x^2-3x-7\right)\left(2x+3\right)=A.\left(4x-7\right)\)
\(Hay\)\(\left(4x^2-7x+4x-7\right)\left(2x+3\right)=A.\left(4x-7\right).\)
\(Hay\)\(\left(4x-7\right)\left(x+1\right)\left(2x+3\right)=A.\left(4x-7\right).\)
\(Vậy\)\(A=\left(x+1\right)\left(2x+3\right)=2x^2+5x+3.\)
Cô ơi, ở dòng hay thứ 2, chỗ : \(\left(x+1\right)\left(2x+3\right)\)từ đâu có vậy cô ? (cp6 làm, phân tích chi tiết giúp em nhe cô). Em cám ơn cô. :)
này như thế này phải không
(4x2+4x-7x-7)(2x+3)= 4x(x+1)-7(x+1)= (4x-7)(x+1)
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)
\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)
=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0
=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0
=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0
=>(2x^2+120+35x)(2x^2+31x+120)=0
=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)
b: Đặt x^2-3x=a
Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)
\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)
=>(3a+10)(a+5)=6(a^2+7a+12)
=>6a^2+42a+72=3a^2+15a+10a+50
=>3a^2+17a+22=0
=>x=-2 hoặc x=-11/3
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
Giải các phương trình sau:
a. \(\frac{4}{2x+3}-\frac{7}{3x-5}=0\)
b. \(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\)
c. \(\frac{2}{2x+1}+\frac{x}{4x^2-1}=\frac{7}{2x-1}\)
d. \(\frac{x^2+5}{25-x^2}=\frac{3}{x+5}+\frac{x}{x-5}\)
\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)
\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)
\(< =>12x-20-14x-21=0\)
\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)
\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)
\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)
\(< =>8x+12+4x-2x+3=0\)
\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)
\(\frac{2}{2x+1}+\frac{x}{4x^2-1}=\frac{7}{2x-1}\left(đkxđ:x\ne-\frac{1}{2};\frac{1}{2}\right)\)
\(< =>\frac{2\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\frac{x}{\left(2x+1\right)\left(2x-1\right)}=\frac{7\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(< =>4x-2+x=14x+7\)
\(< =>14x-5x=-2-7\)
\(< =>9x=-9< =>x=-\frac{9}{9}=-1\left(tm\right)\)
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-4x^2+10}{4x^2-9}\)
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{10-4x^2}{4x^2-9}\)
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{10-4x^2}{\left(2x-3\right)\left(2x+3\right)}\)
\(\frac{\left(x-1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}-\frac{\left(3x+7\right)\left(2x+3\right)}{\left(2x+3\right)\left(2x-3\right)}=\frac{10-4x^2}{\left(2x+3\right)\left(2x-3\right)}\)
2x2-3x-2x+3-(6x2+9x+14x+21)=10-4x2
2x2-3x-2x+3-6x2-9x-14x-21=10-4x2
2x2-3x-2x+3-6x2-9x-14x-21-10+4x2=0
2x2-6x2+4x2-3x-2x-9x-14x+3-21-10=0
-28x-28=0
-28x=28
x=28:(-28)
x=-1
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-4x^2+10}{4x^2-9}\)
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-2\left(2x^2-5\right)}{4x^2-9}\)
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-4x^2+10}{\left(2x+3\right)\left(2x-3\right)}\)
\(-4x^2-28x-18=-4x^2+10\)
\(-4x^2-28x-18+4x^2-10=0\)
\(-28x-28=0\)
\(-28x=28\)
\(x=-1\)