Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm; BC = 5cm. a/ Tính AC, AH, HB, HC. b/ Tính các tỉ số lượng giác của góc B và tính góc C. c/ Vẽ HM vuông góc AB tại M; vẽ HN vuông góc AC tại N. Chứng minh: AM. AB = AN. AC.
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=3cm, AC=4cm. Tính AH, BH
xét △ABC vuông tại A
BC2= AB2+ AC2
BC2= 32+ 42
BC2= 25
BC=\(\sqrt{25}=5\)
Xét △ABC vuông tại A, có AH là đường cao
AB.AC=AH.BC
3.4=AH.5
AH= \(\dfrac{3.4}{5}=2,4\)
Xét △ ABC vuông tại A
AB2= BH.BC
32= BH. 5
BH= 1,8
tham khảo ở đây
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-biet-ab-3cm-ac-4cm-tinh-do-dai-cac-canh-bc-ah-va-so-do-goc-acb-lam-tron-den-do.1482642245232
tính BH
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại ta có
AB2=BC.BH \(\Leftrightarrow\) BH=AB2/BC \(\Leftrightarrow\) BH=9/5
Cho tam giác ABC vuông tại A , Đường cao AH; biết HB = 3cm , HC = 4cm . Tính AB, AH
Lời giải:
a.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
$AH^2=BH.CH=3.4=12$
$\Rightarrow AH=\sqrt{12}=2\sqrt{3}$ (cm)
$AB^2=BH.BC=BH(BH+CH)=3(3+4)=21$
$\Rightarrow AB=\sqrt{21}$ (cm)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài đường cao AH, tính c o s A C B ^ và chu vi tam giác ABH.
A. AH = 2,8 cm; c o s A C B ^ = 3 5
B. AH = 2,4 cm; c o s A C B ^ = 4 5
C. AH = 2,5 cm; c o s A C B ^ = 3 4
D. AH = 1,8 cm; c o s A C B ^ = 2 3
Áp dụng định lý Pytago trong ∆ ABC vuông tại A ta có:
Áp dụng hệ thức lượng trong ∆ ABC vuông tại A có đường cao AH ta có:
Đáp án cần chọn là: B
cho tam giác ABC vuông tại A, đường cao AH biết AB=6cm, BH=3cm. Tính AH,BC,AC
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}=12\left(cm\right)\)
Áp dụng định lý Pitago:
\(AC=\sqrt{BC^2-AB^2}=6\sqrt{3}\left(cm\right)\)
Hệ thức lượng:
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=3\sqrt[]{3}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BC=\dfrac{6^2}{3}=12\left(cm\right)\)
Ta có:BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=12-3=9(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=3\cdot9=27\)
hay \(AH=3\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=12^2-3^2=135\)
hay \(AC=3\sqrt{15}\left(cm\right)\)
a) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 8cm, BH = 4cm. Tính: BC, HC, AH.
b) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 6cm, BH = 3cm. Tính: BC, HC, AH.
a: \(AH=4\sqrt{3}\left(cm\right)\)
HC=12cm
BC=16cm
Cho tam giác ABC vuông tại A, đường cao AH. Đường phân giác góc C cắt AH tại M, cắt AB tại N. Biết: AB=3cm, AC=4cm. Tính HC, BC
+xét tam giác ABC vuông tại A:
=> BC2=AC2+AB2(Định lý pytago)
hay BC2=16+9
BC2= 25
Mà BC>0
=> BC=5(cm)
+xét tam giác ABH vuông tại H và tam giác ABC vuông tại A có:
GÓC B: góc chung
góc A=góc H=90độ (tam giác ABC vuông tại A,AH:đường cao)
=> tam giác ABH đồng dạng với tam giác ABC(góc-góc)
=> BH/AB=BA/BC(các cặp cạnh tương ứng tỉ lệ)
hay BH/3=3/5
=> BH=1,8(cm)
=> HC=5-1,8=4,8(cm)
p/s: mình thấy sai sai , vì sao có dữ liệu phân giác góc C mà lại không dùng đến(bạn tham khảo thử bài mình thôi nhé).Các góc,đồng dạng,độ , bạn cùng kí hiệu.Thông cảm hình mình vẽ hơi tởm=))
1, Cho tam giác ABC vuông tại A,đường cao AH
a, Cho biêt AB=3cm,BC=5cm.Tính độ dài đoạn thẳng BH,CH,AH và AC
b,Cho biết AH=60cm,CH=144cm.Tính độ dài đoạn thẳng AB,AC,BC và BH
2, Cho tam giác ABC vuông tại A, đường cao AH
Cho biết \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\) và BC=122cm.Tính độ dài các đoạn thẳng BH,CH
Bài 2:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: HB+HC=BC
\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)
\(\Leftrightarrow HC=72\left(cm\right)\)
hay HB=50(cm)