Chứng minh a2014 > 2014(a-1) với a>0
cho 2014 điểm a1,a2,...a2014 và 1 đường tròn bán kính 1 đợn vị. chứng minh rằng luôn tồn tại một điểm M sao cho Ma1,Ma2,....Ma2014 >=2014
Cho dãy tỉ số bằng nhau: a1/a2 = a2/a3 = a3/a4 = ... = a2014/a2015
Chứng minh rằng a1/a2015 = (a1+a2+a3+...+a2014/a2+a3+a4+...+a2015)^2014
Bạn nào giúp mình tick cho
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\)
=>\(\frac{a1}{a2}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(1\right)\)
\(\frac{a2}{a3}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2\right)\)
...........
\(\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2014\right)\)
Nhân (1),(2),....(2014) vế với vế:
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}............\frac{a_{2014}}{a_{2015}}=\frac{a_1}{a_{2015}}=\left(\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2015}}\right)^{2014}\)
Vậy...
Cho day tỉ số bằng nhau a1/a2=a2/a3=a3/4=...=a2014/a2015. CMR:
a1/a2015=(a1+a2+a3+...+a2014)2014/(a2+a3+a4+...+a2015)2014
Chứng minh a^2014 > 2014(a-1) với a>0
Chứng minh
a2014> 2014(a-1) với a>0
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
$a^{2014}+\underbrace{1+1+....+1}_{2013}\geq 2014\sqrt[2014]{a^{2014}}$
$\Leftrightarrow a^{2014}+2013\geq 2014a$
$\Rightarrow a^{2014}+2014> 2014a$
$\Rightarrow a^{2014}> 2014(a-1)$ (đpcm)
CHỨNG MINH RẰNG
a^2014>2014(a-1) với a>0
MONG CÁC BẠN GIÚP
gọi a1,a2,a3,...,a2014 là các số tự nhiên thỏa mãn:
\(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+....+\frac{1}{a2014}\)=1
cmr tồn tại ít nhất 1 số ak là số chẵn : (1<=k<2014)
1.gọi a1,a2,a3,...a2014 là các số tự nhiên thỏa mãn:
\(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+.....+\frac{1}{a2014}=1\)
cmr : tồn tại ít nhất 1 số ak là số chẵn (k thuộc N,1<=k<2014)
cho a1 + a2 + ... + a2013 + a2014 khác 0 và a1/a2=a2/a3=a3/a4...=a2013/a2014=a2014/a1
tính giá trị của biểu thức Q = (a1+a2+...+a2014)2/a21+2a22+3a23+...+2014a22014
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2013}}{a_{2014}}=\dfrac{a_{2014}}{a_1}=\dfrac{a_1+a_2+...+a_{2014}}{a_1+a_2+...+a_{2014}}=1\\ \Leftrightarrow a_1=a_2=...=a_{2014}\\ \Leftrightarrow Q=\dfrac{\left(2014a_1\right)^2}{a_1^2\left(1+2+...+2014\right)}=\dfrac{2014^2\cdot a_1^2}{a_1^2\cdot\dfrac{2015\cdot2014}{2}}=\dfrac{2\cdot2014^2}{2015\cdot2014}=\dfrac{2\cdot2014}{2015}=...\)