Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hiếu trần trung
Xem chi tiết
tuan tran
Xem chi tiết
ST
7 tháng 9 2017 lúc 16:51

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\)

=>\(\frac{a1}{a2}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(1\right)\)

\(\frac{a2}{a3}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2\right)\)

...........

\(\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2014\right)\)

Nhân (1),(2),....(2014) vế với vế:

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}............\frac{a_{2014}}{a_{2015}}=\frac{a_1}{a_{2015}}=\left(\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2015}}\right)^{2014}\) 

Vậy...

Nga Quynh Nga
Xem chi tiết
Ut02_huong
Xem chi tiết
Online Math
Xem chi tiết
Akai Haruma
29 tháng 1 2020 lúc 10:05

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

$a^{2014}+\underbrace{1+1+....+1}_{2013}\geq 2014\sqrt[2014]{a^{2014}}$

$\Leftrightarrow a^{2014}+2013\geq 2014a$

$\Rightarrow a^{2014}+2014> 2014a$

$\Rightarrow a^{2014}> 2014(a-1)$ (đpcm)

Khách vãng lai đã xóa
LÊ NGUYÊN HỒNG
Xem chi tiết
Time Lord
Xem chi tiết
mộng mơ
Xem chi tiết
Minh Ahn
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 20:43

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2013}}{a_{2014}}=\dfrac{a_{2014}}{a_1}=\dfrac{a_1+a_2+...+a_{2014}}{a_1+a_2+...+a_{2014}}=1\\ \Leftrightarrow a_1=a_2=...=a_{2014}\\ \Leftrightarrow Q=\dfrac{\left(2014a_1\right)^2}{a_1^2\left(1+2+...+2014\right)}=\dfrac{2014^2\cdot a_1^2}{a_1^2\cdot\dfrac{2015\cdot2014}{2}}=\dfrac{2\cdot2014^2}{2015\cdot2014}=\dfrac{2\cdot2014}{2015}=...\)