Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
iiiiiiiiiiiiiiiiiiiiiiii...
Xem chi tiết
Tên bạn là gì
Xem chi tiết
vương thị thanh thủy
4 tháng 12 2015 lúc 9:45

vào câu hỏi tương tự bạn nhé

Thanh Hiền
4 tháng 12 2015 lúc 10:15

Bạn vào câu hỏi tương tự nhé Tên bạn là gì

OFO1
Xem chi tiết
Đinh Tuấn Việt
30 tháng 10 2015 lúc 22:16

OFO1 tự hỏi rồi cop mạng tự trả lời à ?      

OFO1
30 tháng 10 2015 lúc 22:15

*Voi n=3k+1(dk cua k) 
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k 
=3(3k^2+2k) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 1(n>2) 
*Voi n=3p+2(dk cua p) 
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1 
=9p^2+12p+3 
=3(3p^2+4p+1) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 2(n>2) 
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3 
=>n^2-1 và n^2+1 ko thể đồng thời là 
số nguyên tố voi n>2;n ko chia hết cho 3

 

Đinh Tuấn Việt
30 tháng 10 2015 lúc 22:15

Xét n = 3k + 1 và n = 3k + 2      

phùng hoàng hải phú
Xem chi tiết
phùng hoàng hải phú
Xem chi tiết
Trần Trọng Nguyên
Xem chi tiết
FC TF Gia Tộc và TFBoys...
17 tháng 1 2016 lúc 14:27

 +/n ko chia het cho3 
*Voi n=3k+1(dk cua k) 
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k 
=3(3k^2+2k) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 1(n>2) 
*Voi n=3p+2(dk cua p) 
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1 
=9p^2+12p+3 
=3(3p^2+4p+1) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 2(n>2) 
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3 
=>n^2-1 và n^2+1 ko thể đồng thời là 
số nguyên tố voi n>2;n ko chia hết cho 3

Đào Xuân Sơn
Xem chi tiết
Aries
Xem chi tiết
Nguyễn Anh Duy
2 tháng 11 2016 lúc 17:48

Giả sử:,

+) \(n\) chia \(3\)\(1\) thì \(n^2\) cũng chia \(3\)\(1\), khi đó \(n^2-1\) chia \(3\)\(0\) nên không là số nguyên tố.

+) \(n\) chia \(3\)\(2\) thì \(n^2\) cũng chia \(3\), khi đó \(n^2-1\) chia \(3\)\(00\) nên không là số nguyên tố
Vậy ta có đpcm :)

Xem chi tiết
Trần Công Mạnh
28 tháng 1 2020 lúc 16:18

Bài giải

Ta có: n2 - 1 và n2 + 1 (n không chia hết cho 3, n > 2, n \(\in\)N gì đó)

Xét n:

Vì n không chia hết cho 3

Suy ra n2 chia 3 dư 1

Xét ba số tự nhiên liên tiếp: n2 - 1; n2; n2 + 1

Vì n2 chia 3 dư 1

Nên n2 - 1 \(⋮\)3

Suy ra n2 - 1 là hợp số

Vậy...

Khách vãng lai đã xóa
 Bùi Bảo Anh
29 tháng 1 2020 lúc 14:41

\(n\) lớn hơn 2 và ko chia hết cho 3 nên \(n\) tồn tại dưới 2 dạng là 3k+1 hoặc 3k+2.
Nếu \(n\) có dạng 3k + 2
n2 + 1 = ( 3k + 2 )2 + 1 = 9k2 + 12k + 5
n2 - 1 = 9k2 + 12k + 3 chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Nếu n có dạng 3k + 1
n2 + 1= ( 3k + 1 )2 + 1 = 9k2 + 6k + 2
n2 - 1= ( 3k + 1 )2 - 1 = 9k2+ 6k chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Vậy với n thuộc N , n > 2 và ko chia hết cho 3 thì n2 + 1 và n2- 1 ko thể đồng thời là số nguyên tố.

Chúc học tốt!!!

Khách vãng lai đã xóa