Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Acacia
Xem chi tiết
Agatsuma Zenitsu
25 tháng 1 2020 lúc 10:47

Hình tự vẽ ạ!

a, Xét  \(\Delta MED\)và \(\Delta AEM\)có:

\(\widehat{DME}=\widehat{ACM}\left(so-le-trong\right)\)

\(\widehat{MAE}=\widehat{ACM}\)(cùng chắn cung \(AD\))

\(\Rightarrow\widehat{DME}=\widehat{MAE}\)

\(\widehat{E}\)là góc chung.

\(\Rightarrow\Delta MED~\Delta AEM\left(1\right)\)

Xét \(\Delta BED\)và \(\Delta AEB\)có:

\(\widehat{EBD}=\widehat{BAD}\)(cùng chắn cung \(BD\))

\(\widehat{E}\)là góc chung

\(\Rightarrow\Delta BED~\Delta AEB\left(3\right)\)

b, Từ \(\left(1\right)\Rightarrow\frac{ME}{AE}=\frac{ED}{EM}\Rightarrow ME^2=ED.EA\left(2\right)\)

Từ \(\left(3\right)\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Rightarrow EB^2=EA.ED\left(4\right)\)

Từ \(\left(2\right)\left(4\right)\Rightarrow EM=EB\)

\(\Rightarrow E\)là trung điểm của \(MB\left(Đpcm\right)\)

~~~Happy new year ~~~

Khách vãng lai đã xóa
Trần Tấn Sang g
Xem chi tiết
Thái Thị Mỹ Duyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2021 lúc 13:16

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: M,A,O,B cùng thuộc một đường tròn(đpcm)

Nguyễn Thị Kiều Nhi
Xem chi tiết
Nguyễn Thị Ngọc Anh
Xem chi tiết
Ami Mizuno
4 tháng 2 2022 lúc 21:29

Bạn xem lại đề giúp mình nha, vì đề ko có dữ kiện nào liên quan tới điểm C,D hết

Trần Tiến Đạt
Xem chi tiết
Đào Thúy  Hiền
30 tháng 1 2022 lúc 22:00

Từ một điểm M ở bên ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB với đường tròn (O)( A, B là các tiếp điểm). Gọi E là trung điểm của đoạn thẳng MA, tia EB cắt đường tròn (O) tại C. Tia MC cắt đường tròn (O) tại điểm thứ hai là D. Chứng minh rằng:

a. Tứ giác MAOB nội tiếp;

b. EA2 = EC.EB;

c. BD // MA.

Khách vãng lai đã xóa
Trần Tiến Đạt
Xem chi tiết
Nguyễn Đức Tuệ
24 tháng 5 2018 lúc 11:21

Bạn tự vẽ hình nha

a)Xét tứ giác MAOB có:

\(\widehat{MAO}\)=90'(vì MA là tiếp tuyến của (O))

\(\widehat{MBO}\)=90'(vì MB là tiếp tuyến của (O))

Suy ra \(\widehat{MAO}\)+\(\widehat{MBO}\)=90'+90'=180'

Vậy tứ giác MAOB nội tiếp

b)Xét tam giác ABM có:

MA=MB(tính chất hai tiếp tuyến cắt nhau)

Do đó tam giác MAB là tam giác cân tại M

c)Xét tam giác IBF và IAB có:

\(\widehat{BIA}\)là góc chung

\(\widehat{IBF}\)=\(\widehat{IAB}\)(cùng bằng 1/2 sđ\(\widebat{BF}\))

Do đó tam giác IBF đồng dạng với IAB

Suy ra \(\frac{IB}{IF}=\frac{IA}{IB}\)

<=>\(IB^2=IA.IF\)

Trần Tiến Đạt
23 tháng 5 2018 lúc 22:36

ai giúp mih với

Nguyễn Hương Giang
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Văn Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 1:20

Xét ΔMAD và ΔMCA có

góc MAD=góc MCA

góc AMD chung

=>ΔMAD đồng dạng với ΔMCA

=>MA/MC=MD/MA

=>MA^2=MC*MD