Giải phương trình
\(\left(x+1\right)\left(\frac{360}{x+1}\right)=400\)
1 / giải phương trình sau:
\(\frac{1}{\left(x+2000\right).\left(x+2001\right)}+\frac{1}{\left(x+2001\right).\left(x+2002\right)}...\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)
=> x = -1999 hoặc x = - 2008
1.Giải phương trình: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
2.Giải phương trình: \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
Giải phương trình \(\frac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{1}{\left(x^2+2\right)}+\frac{1}{\left(x^2+1\right)}\)
AYUASGSHXHFSGDB HAGGAHAJF
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{8}\right|+......+\left|x+\frac{1}{110}\right|=11x\)
GIẢI PHƯƠNG TRÌNH
Ta có vế trái của pt luôn \(\ge0\)
Do đó : \(11x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=x+\frac{1}{2}\\...\\\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\end{cases}}\)
Khi đó pt trở thành :
\(x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}=11x\)
\(\Leftrightarrow10x+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=11x\)
\(\Leftrightarrow x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(\Leftrightarrow x=1-\frac{1}{11}=\frac{10}{11}\) ( thỏa mãn )
Vậy : pt đã cho có nghiệm \(S=\left\{\frac{10}{11}\right\}\)
Dễ thấy \(VT>0\forall x\)
\(\Rightarrow11x>0\Rightarrow x>0\)
Phương trình trở thành \(10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=11x\)
\(\Rightarrow x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow x=1-\frac{1}{11}=\frac{10}{11}\)
Vậy \(x=\frac{10}{11}\)
Giải phương trình :\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x^2}\right)^2=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow16=\left(x+4\right)^2\)
\(\Leftrightarrow x^2+8x+16=16\)
\(\Leftrightarrow x^2+8x=0\)
\(\Leftrightarrow x\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)
V...\(S=\left\{-8\right\}\)
^^
bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé
Giải phương trình : \(\left|x+\frac{1}{1.5}\right|+\left|x+\frac{1}{5.9}\right|+....+\left|x+\frac{1}{397.401}\right|=101x\)
Nhận thấy vế trái không âm với mọi x nên điều kiện cần để x là nghiệm của phương trình là vế phải không âm, tức là :
\(101x\ge0\Leftrightarrow x\ge0\)
Khi đó các biểu thức trong tất cả các dấu giá trị tuyệt đối ở vế trái đều dương.
Vì vậy phương trình trở thành :
\(\left(x+\frac{1}{1.5}\right)+\left(x+\frac{1}{5.9}\right)+.....+\left(x+\frac{1}{397.401}\right)=101x\)
\(\Leftrightarrow\left(\frac{1}{1.5}+\frac{1}{5.9}+.....+\frac{1}{397.401}\right)+100x=101x\)
\(\Leftrightarrow x=\frac{1}{1.5}+\frac{1}{5.9}+......+\frac{1}{397.401}\)
\(\Leftrightarrow4x=\frac{4}{1.5}+\frac{4}{5.9}+......+\frac{4}{397.401}\)
\(\Leftrightarrow4x=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-......+\frac{1}{397}-\frac{1}{401}\)
\(\Leftrightarrow4x=1-\frac{1}{401}\)
\(\Leftrightarrow4x=\frac{400}{401}\)
\(\Leftrightarrow x=\frac{100}{401}\)( thỏa mãn điều kiện \(x\ge0\))
Vậy phương trình có nghiệm là \(x=\frac{100}{401}\)
giải các phương trình sau: a) \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}..\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Rightarrow x\left(x+3\right)=10=2.\left(2+3\right)\)
\(\Rightarrow x=2\)
pt <=> \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Giải phương trình : \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2\left(x+\frac{1}{x}\right)^2=x+4\\2\left(x+\frac{1}{x}\right)^2=-x-4\end{cases}}\)
Tới đây thì đơn giản rồi làm tiếp nhé:
Bạn nhân lần lượt ra, sau đó rút gọn, sau một hồi sẽ được:
\(\frac{4\left(x^2+1\right)^4}{x^4}=\left(x+4\right)^2\)
\(\Leftrightarrow\frac{4\left(x^2+1\right)^2}{x^2}=x+4\)
Giải phương trình
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)