Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hako Maruika
Xem chi tiết
Nguyễn Tùng Lâm
Xem chi tiết
Lê Tuấn Anh
Xem chi tiết
Trương Nhật Linh
17 tháng 7 2017 lúc 16:48

Ta có :

- Tận cùng của A là chữ số 2

- Tận cùng của B là chữ số 8

- Tận cùng của C là chữ số 8 .

Vậy tổng ( hiệu ) trên đều không phải số chính phương .

Lediêp Diep
Xem chi tiết
Phan Thị Thúy Mai
29 tháng 6 2017 lúc 15:14

a)Vì số tự nhiên có các chữ số tận cùng laf0;1;2;3;....;9.

Mà số chính phương bằng bình phương của các số tự nhiên

Số chính phương có các chữ số tận cùng là 0;1;4;5;9;6

b)không phải là số chính phương

Nguyễn Xuân Nhi
Xem chi tiết
nguyen duc thang
16 tháng 6 2018 lúc 9:56

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

Nguyễn Quang Linh
29 tháng 11 2018 lúc 21:40

bài cô giao đi hỏi 

Nguyễn Thành Nam
15 tháng 3 2020 lúc 21:25

chịu thôi

...............................

Khách vãng lai đã xóa
Nguyễn Xuân Hưng
Xem chi tiết
Jin Air
30 tháng 7 2016 lúc 15:18

Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)

Ta xét tổng của dãy trên:

       \(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)

<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)

Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp

Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:

\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)

\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)

=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2

Mà một số chính phương khi chia 3 dư 0 hoac 1

Vậy tổng trên không thể là số chính phương

yuuyuyi
30 tháng 7 2016 lúc 15:31

hay ket ban voi luffy

Nguyễn Xuân Hưng
8 tháng 8 2016 lúc 14:31

Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)

Ta xét tổng của dãy trên:

       n2+(n+1)2+(n+2)2+...+(n+1973)2

<=>[n2+(n+1)2+(n+3)2]+....+[(n+1971)2+(n+1972)2+(n+1973)2]

Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp

Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:

(3k1+2)+(3k2+2)+...+(3k658+2)

3.(k1+k2+k3+...+k658)+2.658

=3.(k1+k2+k3+...+k658)+1316chia 3 dư 2

Mà một số chính phương khi chia 3 dư 0 hoac 1

Vậy tổng trên không thể là số chính phương

 
hồng nguyen thi
Xem chi tiết
Trần Dương Quang Hiếu
22 tháng 8 2015 lúc 15:00

hello lừa đảo

Tiếng anh123456
Xem chi tiết
HT.Phong (9A5)
8 tháng 8 2023 lúc 10:58

\(1+2^3+3^3+4^3+5^3\)

\(=1+8+27+64+125\)

\(=225\)

Mà: \(225=15^2\)

Vậy tổng đó là số chính phương 

English Study
Xem chi tiết

Bài 1:

13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)

13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)

13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)

13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp

 

Bài 2:

1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)

100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)

1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)

107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)

11 + 112 + 113 = \(\overline{..1}\)\(\overline{..1}\)\(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)

 

Bài 3: 

32 + 22 = 9 + 4 = 13 (không phải là số chính phương)

62 + 82 = 36 + 64 = 100 = 102 (là số chính phương)

2.3.45.7.9.11.13 + 2018 = \(\overline{...0}\) + 2018 = \(\overline{..8}\) (không phải là số cp)

Bài 4 giống bài 2