Bài 8 . Tính góc A của tam giác ABC biết \(b\left(b^2-a^2\right)=a\left(a^2-c^2\right)\)
1) Cho tam giác ABC, biết góc C : góc B : góc A = 1 : 3 : 6
a/ Tính các góc của tam giác ABC
b/ Tia phân giác góc ngoài đỉnh C của tam giác ABC cắt đường thẳng AB ở E. Tính góc AEC.
2) Cho A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)
So sánh A với \(\frac{-1}{2}\)
HLEP ME, PLEASE!!!!!!!!!!
2) TA CÓ 1/22-1=(1/2-1)x(1/2+1)=-1/2x3/2
1/32-1=(1/3-1)x(1/3+1)=-2/3X4/3..............1/992-1=(1/99-1)(1/99+1)=-98/99x100/99;1/1002-1=(1/100-1)x(1/100+1)=-99/100x101/100
ta có A=-(1/2x2/3x.....98/99x99/100)x(3/2x4/3x......x100/99x101/100)=-1/100x101/2=-101/50<-1/2
TA CÓ 1/22-1=(1/2-1)X(1/2+1)=-1/2X3/2 ;1/32-1=(1/3-1)X(1/3+1)=-2/3X4/3.....................
1/992-1=(1/99-1)X(1/99+1)=-98/99X100/99 ;1/1002-1=(1/100-1)X(1/100+1)=99/100X101/100
VẬY A=-(1/2X2/3X.......X98/99X99/100)X(3/2X4/3X....X100/99X101/100)=-101/50<-1/2
1) Cho tam giác ABC, biết góc C : góc B : góc A = 1 : 3 : 6
a/ Tính các góc của tam giác ABC
b/ Tia phân giác góc ngoài đỉnh C của tam giác ABC cắt đường thẳng AB ở E. Tính góc AEC.
2) Cho A \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
So sánh A với \(\frac{-1}{2}\)
HELP ME, PLEASE!!!!!!!!
2) \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9999}{100^2}\)
\(A=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\) (vì có 99 thừa số âm nên kết quả là âm)
\(A=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3.}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)
\(A=-\left(\frac{1}{100}.\frac{101}{2}\right)\)
\(A=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Trả lời câu nào cũng được nha mấy bạn! Help me, please!!!!!!!
1) Gọi 2 góc A, B, C của tam giác lần lượt là x,y,z (a,b,c khác 0)
Vì góc C : góc B : góc A = 1 : 3 : 6
=> \(\frac{z}{1}=\frac{y}{3}=\frac{x}{6}\) và x + y + z = 180o
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{z}{1}=\frac{y}{3}=\frac{x}{6}=\frac{z+y+x}{1+3+6}=\frac{180^o}{10}=18^o\)
=> \(\begin{cases}z=18^o.1=18^o\\y=18^o.3=54^o\\x=18^o.6=108^o\end{cases}\)
Vậy góc A = 108o; góc B = 54o; góc C = 18o
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
1) Cho tam giác ABC, biết góc C : góc B : góc A = 1 : 3 : 6
a/ Tính các góc của tam giác ABC
b/ Tia phân giác góc ngoài đỉnh C của tam giác ABC cắt đường thẳng AB ở E. Tính góc AEC.
2) Cho A = \(\left(\frac{1}{2^2}-1\right)\) \(\left(\frac{1}{3^2}-1\right)\) \(\left(\frac{1}{4^2}-1\right)\) \(......\) \(\left(\frac{1}{100^2}-1\right)\)
So sánh A với \(\frac{-1}{2}\)
HELP ME, PLEASE!!!!!!!!!!!
a2 = bc
\(\Rightarrow a.a=b.c\Rightarrow\frac{a}{b}=\frac{c}{a}\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Cho tam giác ABC có S=\(\frac{\left(a-b+c\right)\left(a+b-c\right)sinA}{2}\).Tính góc A
Bài 3. Cho tam giác ABC có \(\widehat{BAC}=a\left(0^o< a< 180^o\right)\) , hai đường phân giác của góc B, C cắt nhau tại T. Tính theo \(\widehat{BTC}\) theo a. Tìm a biết \(\widehat{BTC}=2\times\widehat{BAC}\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)
Xét ΔIBC có
\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)
Trong mặt phẳng Oxy, cho tam giác ABC có 3 đỉnh \(A\left(1;-1\right);B\left(2;-3\right);C\left(3;3\right)\)
a) Tìm số đo của góc A của tam giác ABC
b) Viết phương trình các cạnh AB, AC
c) Viết phương trình đường phân giác trong góc A của tam giác ABC
a) \(\cos A=-\dfrac{3}{5}\Rightarrow\widehat{A}\approx126^052'\)
b) \(AB:2x+y-1=0;AC=2x-y-3=0\)
c) Phân giác trong \(AD\) có phương trình : \(y+1=0\)
Bài 28 Cho a,b,c là độ dài ba cạnh của một tam giác. Tính giá trị biểu thức :
P=\(\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Bai 29 Cho biểu thức P=(b2+c2-a2)2-4b2c2
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì P<0
Bài 30Cho các số dương x,y,z thỏa mãn
\(\hept{\begin{cases}xy+y+z=3\\yz+y+z=8\\zx+x+z=15\end{cases}}\)
Tính giá trị biểu thức: P=x+y+z
Bài 28 Cho a,b,c là độ dài ba cạnh của một tam giác. Tính giá trị biểu thức :
P=\(\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Bai 29 Cho biểu thức P=(b2+c2-a2)2-4b2c2
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì P<0
Bài 30Cho các số dương x,y,z thỏa mãn
\(\hept{\begin{cases}xy+y+z=3\\yz+y+z=8\\zx+x+z=15\end{cases}}\)
Tính giá trị biểu thức: P=x+y+z
bài 28
\(P=\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
=>\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-c-b\right)\left(a-c+b\right)}\)
=>\(P=1\)
Bài 30 phải là xy+y+x=3.
Ta có: xy+y+x=3 => (x+1)(y+1)=4(1)
yz+y+z=8 => (y+1)(z+1)=9(2)
zx+x+z=15 => (x+1)(z+1)=16(3)
Nhân (1), (2) và (3) theo vế, ta có:
[(x+1)(y+1)(z+1)]2=576
=> (x+1)(y+1)(z+1)=24(I) hoặc (x+1)(y+1)(z+1)=-24(II)
Lần lượt thay (1),(2),(3) vào (I),(II), tính x,y,z.
Kết quả: P=43/6 hoặc P=-79/6
Bài 28 Cho a,b,c là độ dài ba cạnh của một tam giác. Tính giá trị biểu thức :
P=\(\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Bai 29 Cho biểu thức P=(b2+c2-a2)2-4b2c2
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì P<0
Bài 30Cho các số dương x,y,z thỏa mãn
\(\hept{\begin{cases}xy+y+z=3\\yz+y+z=8\\zx+x+z=15\end{cases}}\)Tính giá trị biểu thức: P=x+y+z