Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Mạnh Tuấn
Xem chi tiết
nonolive
Xem chi tiết
Phạm Hà Duy
Xem chi tiết
Hoa Thiên Lý
26 tháng 2 2016 lúc 8:11

Điều kiện \(\begin{cases}x-1\ge0\\19-x\ge0\end{cases}\)  \(\Leftrightarrow\)  \(x\in\left[1;19\right]\)

Ta thấy ngay phương trình có nghiệm x=10

Nghiệm này thuộc \(\left[1;19\right]\)  

Mặt khác, đặt \(f\left(x\right)=x^2+2x+\sqrt{x-1}\)

                        \(g\left(x\right)=\frac{1000}{x}+\sqrt{19-x}+20\)

Ta dễ dàng kiểm tra \(f\left(x\right)\) là hàm số đồng biến, \(g\left(x\right)\)  là hàm số dị biến trên \(\left[1;19\right]\) 

Vậy \(x=10\) là nghiệm duy nhất của phương trình

Nhật Vy Nguyễn
Xem chi tiết
Trần Thị Minh Thư
4 tháng 3 2018 lúc 22:19

hello bạn

Nguyễn Bình Nguyên
Xem chi tiết
Hoa
Xem chi tiết
Yim Yim
24 tháng 8 2018 lúc 15:26

\(x^2+2x-28+8-\sqrt{2x^2+4x+8}=0\)

\(x^2+2x-28+\frac{64-2x^2-4x-8}{8+\sqrt{2x^2+4x+8}}=0\)

\(x^2+2x-28+\frac{-2\left(x^2+2x-28\right)}{8+\sqrt{2x^2+4x+8}}=0\)

\(\left(x^2+2x-28\right)\left(1-\frac{2}{8+\sqrt{2x^2+4x+8}}\right)=0\)

mà \(1-\frac{2}{8+\sqrt{2x+4x+8}}\ne0\Rightarrow x^2+2x-28=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1-\sqrt{29}\\x=-1+\sqrt{29}\end{cases}}\)

Hoa
24 tháng 8 2018 lúc 21:44

phần b nx bạn ơi

Cao Chi Hieu
Xem chi tiết
Lê Tuyết Ngân
20 tháng 10 2017 lúc 22:12

đến câu hỏi tương tự hình như có hay sao á

chúc may mắn
 

tran hai anh
7 tháng 11 2017 lúc 21:48

:Ở bàn học lớp mấy vậy

Nguyễn Thị Hoàng Anh
20 tháng 11 2017 lúc 21:03

em mới lớp 4 hông hieru âu chị ơi

Nguyễn Kim Chi
Xem chi tiết
phantuananh
Xem chi tiết
Tran Van Dat
24 tháng 1 2016 lúc 9:13

?

aoki reka
24 tháng 1 2016 lúc 9:14

khó

Cô Nàng Cá Tính
24 tháng 1 2016 lúc 10:30

mik ko bít phantuananh a