chứng minh rằng : \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{5}\)
Chứng minh rằng
\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}=\sqrt{2}+\sqrt{10}\)
Câu hỏi của Nguyen Phuc Duy - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này!
chứng minh rằng \(\frac{2\sqrt{mn}}{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)
Áp dụng tính \(\frac{2\sqrt{10}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\)
Nhân tử và mẫu của biểu thức với \(\sqrt{m}+\sqrt{n}-\sqrt{m+n}.\)
\(\Rightarrow\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}+\sqrt{m+n}\right)\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)
\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}\)
\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+n+2\sqrt{mn}-m-n}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)
Ta có: \(\frac{2\sqrt{mn}}{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{(\sqrt{m}+\sqrt{n}+\sqrt{m+n})\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)
\(=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+2\sqrt{mn}+n-m-n}\)
\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{2\sqrt{mn}}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)( đpcm )
Áp dụng: Với \(m=2\)và \(n=5\)và \(mn=10\); \(m+n=7\)ta có:
\(\frac{2\sqrt{10}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=\sqrt{2}+\sqrt{5}-\sqrt{2+5}=\sqrt{2}+\sqrt{5}-\sqrt{7}\)
1.
a) Thu gọn biểu thức A= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
b) So sánh M= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
c) Cho C= \(\sqrt{45+\sqrt{2009}}\) và E= \(\sqrt{45-\sqrt{2009}}\) .Chứng minh rằng : C+ E= 7\(\sqrt{2}\)
c. Ta có: C+E=\(\sqrt{45+\sqrt{2009}}+\sqrt{45-\sqrt{2009}}=\sqrt{\left(\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{41}{2}}\right)^2}+\sqrt{\left(\sqrt{\dfrac{49}{2}}-\sqrt{\dfrac{41}{2}}\right)^2}=\dfrac{7}{\sqrt{2}}+\dfrac{\sqrt{41}}{\sqrt{2}}+\dfrac{7}{\sqrt{2}}-\dfrac{\sqrt{41}}{\sqrt{2}}=\dfrac{2.7}{\sqrt{2}}=7\sqrt{2}\)
=> đpcm.
Chứng minh rằng:
\(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-2\sqrt{5}}=2\)
\(A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)
\(\Leftrightarrow A^3=7+5\sqrt{2}+7-5\sqrt{2}+3\cdot A\cdot\left(-1\right)\)
\(\Leftrightarrow A^3+3A-14=0\)
=>A=2
1. Chứng minh rằng
\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
2. Chứng minh rằng
\(\frac{\sqrt{1}}{1}+\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}+...+\frac{\sqrt{200}}{200}>10+5\sqrt{2}\)
3. Cho a >= 1, b >= 1, chứng minh rằng
\(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
4. Giải phương trình
\(\sqrt{\left(x^2-2x+5\right)\left(x^2-4x\right)+7}+x^2-3x+6\)
LÀM PHIỀN M.N GIÚP MK. XIN CẢM ƠN !!!
Với mọi n nguyên dương ta có:
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)
Với k nguyên dương thì
\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)
\(=\sqrt{k+1}-\sqrt{k-1}\)(*)
Đặt A = vế trái. Áp dụng (*) ta có:
\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)
\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)
...
\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)
Cộng tất cả lại
\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)
3.
Theo bất đẳng thức cô si ta có:
\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)
Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)
Chứng minh rằng: \(\sqrt{3-\sqrt{5}}.\left(2+\sqrt{5}\right)-\sqrt{7+3\sqrt{5}}=0\)
Câu này bạn cứ bình tĩnh tính toán đưa tất cả vào trong dấu căn rồi bỏ hết dấu căn đi nhé. Phân tích vế trái đc:
\(\sqrt{3-\sqrt{5}}.\sqrt{9+4\sqrt{5}}\)
= \(\sqrt{\left(3-\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\)
= \(\sqrt{7+3\sqrt{5}}\)
Bạn tự tính toán, vì công thức gõ lâu nên mình chỉ ghi theo kiểu dàn ý "baren" nhé. Ko hỉu cứ hỏi, lúc nào rảnh mình trả lời.
CHỨNG MINH: \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{5}\)
Ai giải giúp mình với, mình xin cảm ơn:
1. Tìm x,biết: \(\sqrt{4x}-3\sqrt{x}+2\sqrt{15x}=18\)
2. Rút gọn: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
3. Chứng minh rằng: \(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}=\sqrt{2}\left(\sqrt{5}+1\right)\)
3.
Ta có: \(VT=\)\(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}\)
\(=8+8+\left(2\sqrt{10+2\sqrt{5}}-2\sqrt{10+2\sqrt{5}}\right)\)
\(=16\ne VP\)
⇒ Đề sai
1. Ta có: \(\sqrt{4x}\)- 3\(\sqrt{x}\)+2\(\sqrt{15x}\)=18
⇌2\(\sqrt{x}\)-3\(\sqrt{x}\) +2\(\sqrt{15x}\)=18
⇌\(-\sqrt{x}\) +2\(\sqrt{15x}\)-15 = 3
⇌-(\(\sqrt{x}\) -2\(\sqrt{15x}\)+15 )=3
⇌(\(\sqrt{x}\)-\(\sqrt{15}\))=-3 (vô lí)
Vậy không tìm được giá trị x thỏa mãn bài toán
2.Ta có: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
= \(\dfrac{1}{\sqrt{6-2\sqrt{6.5}+5}}-\dfrac{3}{2-2\sqrt{2.5}+5}\)
=\(\dfrac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\dfrac{3}{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
=\(\dfrac{1}{\sqrt{6}-\sqrt{5}}-\dfrac{3}{\sqrt{3}-\sqrt{2}}\)
hình như đề sai
Chứng minh rằng
\(5\sqrt{2}< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{50}}< 10\sqrt{2}\)