tìm tất cả các cặp số lẻ (a,b) thỏa mãn a^2+b^2 là 1 số chính phương
Tìm tất cả các cặp số nguyên dương (m, n) thỏa mãn 6m + 2n + 2 là số chính phương.
Bài 2. Tìm tất cả các số nguyên tố a, b, c thỏa mãn a+b+c+6 là một số chính phương không chia hết cho 3 và ab+bc+ca+12a+12b+12c−30 là một số chính phương.
Bài 4 :
a) Tìm hai số tự nhiên chẵn liên tiếp biết hiệu các bình phương của 2 số ấy là 68
b) Tìm hai số tự nhiên lẻ liên tiếp biết tổng các bình phương của 2 số ấy là 2594
c) Tìm tất cả số tự nhiên n thỏa mãn \(n^2+6n+12\) là số chính phương
gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20
Tìm tất cả các cặp số nguyên dương (m, n) thỏa mãn 6m + 2n + 2 là số chính phương.
Bài 1: Tìm 6 SNT thỏa mãn \(p_1^2+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\)
Bài 2: Tìm SNT p để \(\frac{p+1}{2}\)và \(\frac{p^2+1}{2}\)là số chính phương
Bài 3: Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đồng thời 2 điều kiện 4a+1 và 4b-1 nguyên tố cùng nhau; a+b là ước của 16ab+1
thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)
có bổ đề SCP LẺ chia 8 dư 1 do đó:
trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)
\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)
\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)
thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)
đến đây thì đơn giản
\(16ab+1⋮a+b\Leftrightarrow16ab+4a+4b+1=\left(4a+1\right)\left(4b+1\right)⋮a+b\)
\(d=\left(4a+1,a+b\right)\Rightarrow4a+1-4a-4b=1-4b⋮d\text{ hay }4b-1⋮d\Rightarrow\left(4a+1,a+b\right)=1\)
do đó: \(4b+1⋮a+b\Rightarrow4b+1=ka+kb\text{ với k}\le3\)
\(+,k=3\Rightarrow4b+1=3a+3b\text{ hay }b+1=3a\)
k=2 thì 4b+1=2a+2b hay 2b=2a-1
k=1 thì 3b+1=a
a) Tìm tất cả các số tự nhiên \(k\) sao cho \(2k+1\) và \(4k+1\) đều là các số chính phương.
b) Với mỗi số tự nhiên \(k\) thỏa mãn đề bài, chứng minh rằng \(35|k^2-12k\)
bài 1: tìm tất cả các cặp số thực (a,b) thỏa mãn: a2+b2+9=ab+3a+3b
bài 2: cho các số thực a,b,c thỏa mãn (a+b+c)2=3(ab+bc+ca). chứng minh a=b=c
Bài 2 :
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0
<=> a = b = c
Bài 1 :
a^2 + b^2 + 9 = ab + 3a + 3b
<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b
<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0
<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0
Dấu ''='' xảy ra khi a = b = 3
1.
\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)
2.
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Tìm tất cả các số nguyên dương n thỏa mãn:
a) \(n^2+8n+29\) là số chính phương
b) \(9n^2+6n+22\)là số chính phương
a) \(n^2+8n+29=n^2+4n+4n+16+15=\left(n+4\right)^2+15=m^2\)
\(\Leftrightarrow m^2-\left(n+4\right)^2=15\Leftrightarrow\left(m-n-4\right)\left(m+n+4\right)=13=1.13\)
Do \(m-n-4< m+n+4\)nên ta có trường hợp:
\(\hept{\begin{cases}m-n-4=1\\m+n+4=13\end{cases}}\Leftrightarrow\hept{\begin{cases}m=7\\n=2\end{cases}}\)(thỏa)
b) \(9n^2+6n+22=3\left(3n^2+n\right)+3n+1+21=\left(3n+1\right)^2+21=m^2\)
\(\Leftrightarrow m^2-\left(3n+1\right)^2=21\Leftrightarrow\left(m-3n-1\right)\left(m+3n+1\right)=21=1.21=3.7\)
Ta có các trường hợp:
- \(\hept{\begin{cases}m-3n-1=1\\m+3n+1=21\end{cases}}\Leftrightarrow\hept{\begin{cases}m=11\\n=3\end{cases}}\)(thỏa)
- \(\hept{\begin{cases}m-3n-1=3\\m+3n+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=5\\n=\frac{1}{3}\end{cases}}\)(loại)
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.