Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đăng Khoa
Xem chi tiết
Phí Văn Vượng
Xem chi tiết
Phong Thần
2 tháng 2 2021 lúc 11:02

cho hết rồi tính chi nữa

1 tam giác có 3 góc cho hết 3 góc rồi thì tính tam giác nào nữa vậy bạn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 5 2018 lúc 7:48

Đỗ Nguyễn Ngọc Thảo
Xem chi tiết
oki pạn
30 tháng 1 2022 lúc 9:29

lỗi

⳽Ꚕιŋɛƙα❀
30 tháng 1 2022 lúc 9:32

Lỗi r bạn ;-;

Rin Huỳnh
30 tháng 1 2022 lúc 9:36

Lỗi

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 21:45

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)

hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)

Nguyễn Ngọc Đại 1
Xem chi tiết
Yen Nhi
28 tháng 11 2021 lúc 13:12

Answer:

a, 

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

Mà đề ra: \(\widehat{A}=40^o\)

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A)

\(\Rightarrow40^o+\widehat{B}+\widehat{B}=180^o\)

\(\widehat{2B}=140^o\)

\(\widehat{B}=70^o\)

\(\Rightarrow\widehat{B}=\widehat{C}=70^o\)

C B A 40 độ

b,

Theo đề ra: Tam giác ABC cân tại A

\(\Rightarrow\widehat{B}=\widehat{C}=50^o\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\widehat{A}+100^o=180^o\)

\(\Rightarrow\widehat{A}=80^o\)

50 độ C B A

c,

Theo đề ra: Tam giác ABC cân tại A

\(\Rightarrow\widehat{C}=\widehat{B}=60^o\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\widehat{A}+120^o=180^o\)

\(\Rightarrow\widehat{A}=60^o\)

C A B 60 độ

Khách vãng lai đã xóa
Tuấn Võ Lê Văn
9 tháng 1 2022 lúc 20:31

a

 

Trần Kim Yến
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 14:52

Hình vẽ:

undefined

Akai Haruma
15 tháng 3 2021 lúc 14:54

Lời giải:
a) 

Theo định lý tổng 3 góc trong tam giác:

$\widehat{D}+\widehat{E}+\widehat{F}=180^0$

$\Rightarrow \widehat{E}+\widehat{F}=180^0-\widehat{D}=180^0-60^0=120^0$

Mà tam giác $DEF$ cân tại $D$ nên $\widehat{E}=\widehat{F}$

Do đó:

$\widehat{E}=\widehat{F}=\frac{120^0}{2}=60^0$

b) 

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (do $ABC$ cân tại $A$)

$\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)

$BM=CM$ (do $M là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.g.c)

Duki Ta
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 20:05

c) Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)

\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)

Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)

nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)

mà \(\widehat{B}+\widehat{C}=140^0\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)

Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)

mà cạnh đối diện với \(\widehat{A}\) là cạnh BC

cạnh đối diện với \(\widehat{B}\) là cạnh AC

và cạnh đối diện với \(\widehat{C}\) là cạnh AB

nên BC<AC<AB

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 23:27

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=50^0\)

Xét ΔABC vuông tại A có 

\(AB=BC\cdot\sin\widehat{C}\)

\(\Leftrightarrow AB=20\cdot\sin50^0\)

hay \(AB\simeq15,32\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)

hay \(AC\simeq12,86\left(cm\right)\)