Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Tùng Dương
Xem chi tiết
Phạm Thành Đông
6 tháng 3 2021 lúc 12:04

\(x^4-9x^2+24x-16=\)\(0\)

\(\Leftrightarrow x^4-\left(9x^2-24x+16\right)=0\)

\(\Leftrightarrow x^4-\left(3x-4\right)^2=0\)

\(\Leftrightarrow\left(x^2+3x-4\right)\left(x^2-3x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]=0\)

Vì \(\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)nên:

\(\left(x+4\right)\left(x-1\right)=0:\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

Vậy phương trình có tập nghiệm \(S=\left\{1;-4\right\}\)

Khách vãng lai đã xóa
Phạm Thành Đông
6 tháng 3 2021 lúc 12:14

\(x^4=6x^2+12x+\)\(8\)

\(\Leftrightarrow x^4-2x^2+1=4x^2+12x+9\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow|x^2-1|=|2x+3|\)\(|\)

xét các trường hợp:

- Trường hợp 1:

\(x^2-1=2x+3\)

\(\Leftrightarrow x^2-1-2x-3=0\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{5}\\x-1=-\sqrt{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}}\)

-Trường hợp 2:

\(x^2-1=-2x-3\)

\(\Leftrightarrow x^2-1+2x+3=0\)

\(\Leftrightarrow x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)^2+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=-1\left(vn\right)\)(vô nghiệm)

Vậy phương trình có tập nghiệm: \(S=\left\{1\pm\sqrt{5}\right\}\)

Khách vãng lai đã xóa
Phạm Thành Đông
6 tháng 3 2021 lúc 12:48

\(x^4=4x+1\)

\(\Leftrightarrow x^4+2x^2+1=2x^2+4x+2\)

\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)

\(\Leftrightarrow|x^2+1|=|x\sqrt{2}+\sqrt{2}|\)

Xét các trường hợp sau:

-Trường hợp 1:

\(x^2+1=x\sqrt{2}+\sqrt{2}\)

\(\Leftrightarrow x^2+1-x\sqrt{2}-\sqrt{2}=0\)

\(\Leftrightarrow\left(x^2-2x.\frac{\sqrt{2}}{2}+\frac{1}{2}\right)-\frac{2\sqrt{2}-1}{2}=0\)

\(\Leftrightarrow\left(x-\frac{1}{\sqrt{2}}\right)^2=\frac{2\sqrt{2}-1}{2}\)

Vì \(\frac{2\sqrt{2}-1}{2}>0\)nên:

\(\left|x-\frac{1}{\sqrt{2}}\right|=\left|\sqrt{\frac{2\sqrt{2}-1}{2}}\right|\)

Lại xét các trường hợp:

+Trường hợp 1.1:

\(x-\frac{1}{\sqrt{2}}=\frac{\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\)\(\Leftrightarrow x=\frac{\sqrt{2\sqrt{2}-1}+1}{\sqrt{2}}\)

+Trường hợp 1.2:

\(x-\frac{1}{\sqrt{2}}=\frac{\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\Leftrightarrow x=\frac{1-\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\)

-Trường hợp 2:

\(x^2+1=-x\sqrt{2}-\sqrt{2}\)(2)

\(\Leftrightarrow x^2+1+x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow\left(x^2+2x.\frac{\sqrt{2}}{2}+\frac{1}{2}\right)+\frac{1+2\sqrt{2}}{2}=0\)

\(\Leftrightarrow\left(x+\frac{1}{\sqrt{2}}\right)^2=\frac{-1-2\sqrt{2}}{2}\)(vô nghiệm)

Do đó phương trình (2) vô nghiệm.

Vậy phương trình có tập nghiệm : \(S=\left\{\frac{1\pm\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\right\}\)

Khách vãng lai đã xóa
Postgass D Ace
Xem chi tiết
Thanh Tùng DZ
3 tháng 3 2020 lúc 20:06

nhận thấy x = 0 không là nghiệm của phương trình

Chia 2 vế phương trình cho x2, ta được : 

\(x^2-9x+24-\frac{27}{x}+\frac{9}{x^2}=0\)  ( 1 )

đặt \(t=x+\frac{3}{x}\)

( 1 ) \(\Leftrightarrow\left(x+\frac{3}{x}\right)^2-9\left(x+\frac{3}{x}\right)+18=0\)

\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\left(t-6\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)

Khi đó : \(\orbr{\begin{cases}x+\frac{3}{x}=6\Leftrightarrow x=3\pm\sqrt{6}\\x+\frac{3}{x}=3\Leftrightarrow x\in\varnothing\end{cases}}\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2018 lúc 9:44

Đáp án đúng : C

oOo Dễ thương oOo
Xem chi tiết
Tứ Diệp Thảo
7 tháng 1 2017 lúc 20:15

a. \(x^4-10x^3+25x^2-36=0\)

=> \(x^3\left(x-3\right)-7x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(x^3-7x^2+4x+12\right)=0\)

=>\(\left(x-3\right)\left[x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)\right]=0\)=> \(\left(x-3\right)\left(x-2\right)\left(x^2-5x-6\right)=0\)

=> \(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x-6\right)=0\)

=>\(\left[\begin{matrix}x=3\\x=2\\x=-1\\x=6\end{matrix}\right.\)

b) \(x^4\) - \(^{9x^2}\) - 24x - 16 = 0

=> \(x^3\left(x-4\right)+4x^2\left(x-4\right)+7x\left(x-4\right)+4\left(x-4\right)=0\)=>\(\left(x-4\right)\left(x^3+4x^2+7x+4\right)=0\)

=> \(\left(x-4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+4\left(x+1\right)\right]=0\)=>\(\left(x-4\right)\left(x+1\right)\left(x^2+3x+4\right)=0\)

=> \(\left(x-4\right)\left(x+1\right)=0\) (vì x^2 + 3x + 4> 0)

=>\(\left[\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

Thành Đạt
7 tháng 1 2017 lúc 20:29

a,pt\(\Leftrightarrow\left(x^4-10x^3+25x\right)-36=0\)\(\Leftrightarrow\left(x^2-5x\right)^2-36=0\)

\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x+6\right)=0\)\(\Leftrightarrow\left[\begin{matrix}x^2-5x-6=0\\x^2-5x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(x-6\right)=0\\\left(x-2\right)\left(x-3\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-1,x=6\\x=2,x=3\end{matrix}\right.\)

vậy pt có 4 nghiệm x=(-1,6,2,3)

Thành Đạt
7 tháng 1 2017 lúc 20:43

pt\(\Leftrightarrow x^4-\left(9x^2+24x+16\right)=0\)\(\Leftrightarrow\left(x^2\right)^2-\left(3x+4\right)^2=0\)\(\Leftrightarrow\left(x^2-3x-4\right)\left(x^2+3x+4\right)=0\)\(\Leftrightarrow\left[\begin{matrix}x^2-3x-4=0\\x^2+3X+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}\left(x-4\right)\left(x+1\right)=0\\x^2+3x+4>0\end{matrix}\right.\)\(\Leftrightarrow x=4,x=-1\)

vậy pt có nghiệm x=(4,-1)

Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 10:03

\(T=\dfrac{\left(x1\cdot\sqrt{x_2}+x_2\cdot\sqrt{x_1}\right)}{x1^2+x_2^2}\)

\(=\dfrac{\sqrt{x_1\cdot x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)}{\left(x_1+x_2\right)^2-2x_1x_2}\)

\(=\dfrac{4\cdot\sqrt{x_1+x_2+2\sqrt{x_1x_2}}}{9^2-2\cdot16}=\dfrac{4\cdot\sqrt{9+2\cdot4}}{81-32}\)

\(=\dfrac{4\sqrt{17}}{49}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 7 2019 lúc 15:59

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 9 2017 lúc 5:28

Đáp án B.

Đặt 3x = t > 0.

Phương trình <=> t2 + 2(x – 2)t + 2x – 5 = 0

f(x) = 3x là hàm số đồng biến trên  ℝ

g(x) = –2x + 5 là hàm số nghịch biến trên  ℝ

=> Phương trình (*) ó f(x) = g(x) có nhiều nhất l nghiệm

f(1) = g(1) => x = 1 là nghiệm của phương trình.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2018 lúc 8:52

Đáp án B.

Đặt 3 x = t > 0 .

Phương trình 

⇔ t 2 + 2 ( x − 2 ) t + 2 x − 5 = 0 ⇔ t = − 1   ( 1 ) t = − 2 x + 5 ⇒ 3 x = − 2 x + 5  (*)

Có f ( x ) = 3 x  là hàm số đồng biến trên R

g ( x ) = − 2 x + 5  là hàm số nghịch biến trên R

 Phương trình (*) ⇔ f ( x ) = g ( x )  có nhiều nhất l nghiệm

Có f ( 1 ) = g ( 1 ) ⇒ x = 1  là nghiệm của phương trình

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2019 lúc 8:36