Cho 2x\(^2\)y-xy\(^2\)=1 và 8x\(^3\)-y\(^3\)=7.Tính giá trị biểu thức B=2016x-y
B = 2x(4x + 1) − 8x^2 (x + 1) + (2x)^3 − 2x + 3.
c) C = (x − 1)^3 + (x + 1)^3 + 2x(x + 2)(x − 2).
d) D = (x + y − 5)^2 − 2(x + y − 5)(x + 3) + x^2 + 6x + 9
Câu 2. a) Cho x + y = 7 và x.y = 12. Tính giá trị của biểu thức (x − y)^2 .
b) Cho x + y = 1. Tính giá trị của biểu thức 3(x^2 + y^2 ) − 2(x^3 + y^3 ).
\(B=8x^2+2x-8x^3-8x^2+8x^3-2x+3=3\)
\(C=x^3-3x^2+3x-1+x^3+3x^2+3x+1+2x^3-8x=4x^3-2x\)
\(D=\left(x+y-5\right)^2-2\left(x+y-5\right)\left(x+3\right)+\left(x+3\right)^2=\left(x+y-5-x-3\right)^2=\left(y-8\right)^2\)
câu 2. ta có
a.\(\left(x-y\right)^2=\left(x+y\right)^2-4xy=7^2-4\times12=1\)
b.\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=3\left(x+y\right)^2-6xy-2\left(x+y\right)^3+6xy\left(x+y\right)=3-6xy-2+6xy=1\)
Cho 2x\(^2\)y-xy\(^2\)=1 và 8x\(^3\)-y\(^3\)=7.Tính giá trị B=2016x-y
rút gọn rồi tính giá trị biểu thức
a, A= x^2y(y-x)-xy(x-y)/ 3y^2- 3x^2y với x=-9 và y=2016
b, B= (8x^3+y^3)(4x^2-y^2)/ (2x+y)(4x^3-2xy+y^2) với x= -1/2 và y=2
Bài 3:
a, Tính giá trị của biểu thức A = \(5xy-10+3y\) tại \(x=2\) và \(y=-3\)
b, Tính giá trị của biểu thức B = \(8xy^2-xy-2x-10\) tại \(x=1\) và \(y=-1\)
a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)
b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)
=8+1-2-10
=-3
a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49
b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10
=8+1-2-10
=-3
) Tính giá trị các biểu thức: a) 2 3 A 4x 6xy 3y tại x 2; y 2 b) 2016x 2017y B 2016x 2017y biết x y 2 3
Cho biểu thức M=\(x^3\)+3x\(y^2\)- 2xy+\(x^3\)- xy - 2x\(y^2\)+1
a) thu gọn biểu thức M ; tính giá trị biểu thức khi x=-1 ; y=2
A = 3x^3 +6x^2 + 3xy^3
x= 1 phần 2 ; p = -1 phần 3
A=3.1 phần 2^3 . -1 phần 3 + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3
=-1 phần 8 + -1 phần 2 - 1 phần 2
= -1 phần 4
Bài 1 : Cho biểu thức :
B = 15 - 3x - 3y
a) Tính giá trị của biểu thức tại : x + y - 5 = 0
b) Tìm x biết giá trị của biểu thức là 10 khi y = 2
Bài 2 : Tìm x biết :
a) 3x2 - 7 = 5
b) 3x - 2x2 = 0
c) 8x2 + 10x + 3 = 0
Bài 5 : Tìm giá trị của biểu thức A = x + y - 10 biết /1/ = 2 và /y/ = 1
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
tính giá trị của biểu thức sau:
a)2x-\(\dfrac{y\left(x^2-2\right)}{xy+y}\)tại x=0;y=-1
b)A=4x^2-3IxI-2 tại x=2 và x=-3
c)B=5x^2-7y+6 tại x=-1/5;y=-3/7
a.\(x=0;y=-1\)
\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)
b.\(x=2\)
\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)
\(x=-3\)
\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)
c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)
\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x=2 và biểu thức A ta đc
\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)
thay x=-3 biểu thức A ta đc
\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)
thay x=-1/5 ; y=-3/7 biểu thức B ta đc
\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)
\(B=5\cdot\dfrac{1}{25}+3+6\)
\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x =0 , y= -1 và biểu thức ta đc
\(0-\dfrac{\left(-1\right)\left(0^2-2\right)}{0.\left(-1\right)+\left(-1\right)}=0-\dfrac{2}{-1}=0+2=2\)
a, rút gọn bt: 3×(2x + 1)+2× (3x - 7)
b, tính giá trị biểu thức M= 8x3 - 12x2y+ 6xy2-y3