Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Vy
Xem chi tiết
Trần Phúc Khang
8 tháng 7 2019 lúc 23:01

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT cosi

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)

Tương tự 

=> \(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{1}{4}\left(a+b+c\right)\)

Lại có \(\left(a+b+c\right)\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{9}{1}=9\)

=> \(A\ge\frac{9}{4}\)

MinA=9/4 khi a=b=c=3

Trần Văn Quân
Xem chi tiết
Nguyễn Thị Cẩm Ly
Xem chi tiết
Himakoto Nhận Làm Ảnh An...
20 tháng 3 2017 lúc 18:43

- Xin chào <33 Mình là Himakoto <33
- Mình nhận làm ảnh Anime nhé <3
- Mình nhận làm theo mọi kích cỡ <33 Bạn nào có nhu cầu thì điền vào bản dưới và đăng dưới phần bình luận nhé <33 Mình sẽ làm thật nhanh cho bạn <33

>>Bản đặt ảnh<<
. Tên bạn :
. Bạn đặt ảnh thể loại ( anime, manga, vocaloid, ... ) :
. Kích cỡ ảnh :
. Chúc :

- Vậy thôi <33 Hãy ủng hộ Shop tụi mình bằng cách Addfriend ( Kết Bạn ) với Shop nhé <33 
- Iu các bựn lém tơ <33

Kushito Kamigaya
Xem chi tiết
Nguyễn Hưng Phát
13 tháng 7 2018 lúc 21:16

Đặt \(\frac{a+b}{\sqrt{ab}}=t\ge2\)

Thế vào :\(A\ge\frac{\sqrt{ab}}{a+b}+\frac{16.\frac{\left(a+b\right)^2}{2}}{ab}=\frac{\sqrt{ab}}{a+b}+\frac{8\left(a+b\right)^2}{ab}=\frac{1}{t}+8t^2\)

\(=\frac{1}{2t}+\frac{1}{2t}+\frac{1}{16}t^2+\frac{127t^2}{16}\)

\(\ge\sqrt[3]{\frac{1}{2t}.\frac{1}{2t}.\frac{t^2}{16}}+\frac{127t^2}{16}=3\sqrt[3]{\frac{1}{4}.\frac{1}{16}}+\frac{127t^2}{16}\ge\frac{3}{4}+\frac{127.2^2}{16}=\frac{3}{4}+\frac{127}{4}=\frac{130}{4}=\frac{65}{2}\)

Vậy min A=\(\frac{65}{2}\) đạt được khi \(t=2\Rightarrow\frac{a+b}{\sqrt{ab}}=2\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=0\Rightarrow a=b\)

Nguyễn Hưng Phát
16 tháng 7 2018 lúc 13:25

sorry,hàng thứ 4 biểu thức đầu tiên  là \(3\sqrt[3]{\frac{1}{2t}.\frac{1}{2t}.\frac{t^2}{16}}\) nha

An Vy
Xem chi tiết
Thảo Nguyên Xanh
Xem chi tiết
alibaba nguyễn
25 tháng 10 2017 lúc 8:31

Đề bị thiếu rồi. Đáng lẽ phải có a + b = ??? đấy nữa chứ.

An Vy
Xem chi tiết
Trần Phúc Khang
8 tháng 7 2019 lúc 15:21

Ta có \(a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\)

        \(b+ac=\left(b+a\right)\left(b+c\right)\)

        \(c+ab=\left(a+b\right)\left(c+b\right)\)

Đặt \(a+b=x;b+c=y;a+c=z\)=> \(x+y+z=2\)

Khi đó \(P=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)

Áp dụng BĐT cosi \(\frac{xy}{z}+\frac{yz}{x}\ge2y\)\(\frac{yz}{x}+\frac{xz}{y}\ge2z\);\(\frac{xy}{z}+\frac{xz}{y}\ge2z\)

Cộng 3 BĐT trên

=> \(P\ge x+y+z=2\)

Vậy MinP=2 khi a=b=c=1/3

Nguyễn Văn Vũ
Xem chi tiết
Thiên An
1 tháng 7 2017 lúc 9:42

Ta có  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\)  \(\Rightarrow a+b+c\ge\sqrt{3}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c=\frac{\sqrt{3}}{3}\)

Việt Đức Nguyễn
Xem chi tiết
phan thị minh anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 8 2016 lúc 19:36

Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)

Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)

Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)

Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)

\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)

b) Áp dụng bđt Cauchy : 

\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)

\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)

\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)

\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\) 

Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)