Cho a ,b >0 , a+b=1 .Tìm Min D = \(\frac{2}{ab}+\frac{3}{a^2+b^2}\)
Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\) Tìm Min A=\(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\)
cho a,b >0 và \(a+b\le4\). tìm min của
\(A=\frac{2}{a^2+b^2}+\frac{32}{ab}+2ab\sqrt{2}\)
1.Cho a, b dương thỏa mãn ab=1. tìm min của B=\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\)
2. Tìm min của T=\(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
Cho 0<a,b,c<1 và ab+bc+ca=1 tìm \(P_{min}=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}++\frac{c^2\left(1-2a\right)}{a}\)
Cho a,b >0 và \(a+b\le3\). Tìm min
\(K=\dfrac{1}{a^2+b^2-2\left(a+b\right)+2}+\dfrac{1}{ab-\left(a+b\right)+1}+4\left(ab-a-b\right)\)
cho a,b,c > 0 và a + b + c +ab + bc + ac = 6
Min P = \(\frac{a^3}{b}\) + \(\frac{b^3}{c}\)+ \(\frac{c^3}{a}\)
Cho a,b,c>0. Cmr: a) \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
b) \(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\le1\)
Cho a,b>0 và a+b+ab=3. Chứng minh \(\frac{3a}{b+1}+\frac{3b}{a+1}+\frac{ab}{a+b}\le a^2+b^2+\frac{3}{2}̸\)