Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bên nhau trọn đời
Xem chi tiết
ANH HOÀNG
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 12:54

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)

Minh Sơn Nguyễn
Xem chi tiết
Do boys like to sleep an...
Xem chi tiết
Quân Triệu Minh
Xem chi tiết
Hà Trí Kiên
Xem chi tiết

(\(x-3\))+ (2y - 1)2 = 0

          (\(x\) - 3)2 ≥ 0 ∀ \(x\)

        (2y - 1)2 ≥ 0 ∀ y

⇔ (\(x\) - 3)2 + (2y - 1)2= 0

⇔ \(\left\{{}\begin{matrix}x-3=0\\3y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{3}\end{matrix}\right.\)

(4\(x-3\))4 + (y + 2)2 ≤ 0

(4\(x\) - 3)4 ≥ 0 ∀ \(x\)

(y + 2)2 ≥ 0 ∀ y

⇔(4\(x\) - 3)4   + (y+2)2 ≥ 0

⇔ (4\(x\) - 3)4 + (y + 2)2 ≤ 0 ⇔

\(\left\{{}\begin{matrix}4x-3=0\\y+2=0\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-2\end{matrix}\right.\)

 

 

 

Nguyễn Hoàng Ngọc Hân
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Lê Thành Nam
19 tháng 12 2019 lúc 20:37

Ta có : \(\left(x-2\right)^2\)\(.\left(x+1\right).\left(x-4\right)\le0\)

⇔(x+1)(x-4)\(\le\)0

Với (x+1)\(\le\)0 thì (x-4)\(\ge\)0 (loại vì (x+1)>(x-4))

Với (x+1)\(\ge\)0 thì (x-4)\(\le\)0 (chọn)

Ta có: x+1\(\ge\)0 \(\Rightarrow\)x\(\ge\)-1 (1)

x-4\(\le\)0 \(\Rightarrow\)x\(\le\)4 (2)

Từ (1) và (2) suy ra 4\(\ge\)x\(\ge\)-1

Vậy x ϵ {4;3;2;1;0;-1}

Chúc bạn học tốt!

Khách vãng lai đã xóa
ANH HOÀNG
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 9 2021 lúc 12:13

a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 12:14

\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

👁💧👄💧👁
15 tháng 9 2021 lúc 12:15

a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

Mà \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x;y\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;\dfrac{1}{10}\right)\)

b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\forall x;y\)

\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}=0\\\left(y^2-\dfrac{1}{4}\right)^{10}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(10;\dfrac{1}{2}\right);\left(10;-\dfrac{1}{2}\right)\right\}\)