Tìm x biết: \(\left(x-2\right)^2.\left(x+1\right).\left(x-4\right)\le0\)
Tìm x biết:\(\left(x^2-1\right)\cdot\left(x^2-3\right)\left(x^2-5\right)\left(x^2-7\right)\le0\)
Tìm x,y biết :
a) \(\left|3.x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}.y+\dfrac{3}{5}\right|\)= 0
b)\(\left|\dfrac{3}{2}.x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}.y-\dfrac{1}{2}\right|\le0\)
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
Tìm số hữu tỉ x, biết:
\(\left(x-2\right)\left(x+2\right)\left(4-x\right)\left[\left(x-1\right)^2\right]\le0\)
1 tick nha
tìm x biết
\(\left(x^2-1\right)\left(x^2-3\right)\left(x^2-5\right)\left(x^2-7\right)\le0\)
tìm x,biết:
\(^{\left(x^2-1\right)\left(x^2-3\right)\left(x^2-5\right)\left(x^2-7\right)\le0}\)
Tìm các cặp số x,y
\(\left(x-3\right)^2+\left(2y-1\right)^2=0\)
\(\left(4x-3\right)^4+\left(y+2\right)^2\le0\)
(\(x-3\))2 + (2y - 1)2 = 0
(\(x\) - 3)2 ≥ 0 ∀ \(x\)
(2y - 1)2 ≥ 0 ∀ y
⇔ (\(x\) - 3)2 + (2y - 1)2= 0
⇔ \(\left\{{}\begin{matrix}x-3=0\\3y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{3}\end{matrix}\right.\)
(4\(x-3\))4 + (y + 2)2 ≤ 0
(4\(x\) - 3)4 ≥ 0 ∀ \(x\)
(y + 2)2 ≥ 0 ∀ y
⇔(4\(x\) - 3)4 + (y+2)2 ≥ 0
⇔ (4\(x\) - 3)4 + (y + 2)2 ≤ 0 ⇔
⇔\(\left\{{}\begin{matrix}4x-3=0\\y+2=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-2\end{matrix}\right.\)
tìm x và y biết
a) \(\left|5x+1\right|+\left|6y-8\right|\le0\)
b) \(\left|x+2y\right|+\left|4y-3\right|\le0\)
c) \(\left|x-y+2\right|+\left|2y+1\right|\le0\)
Tìm x biết: \(\left(x-2\right)^2.\left(x+1\right).\left(x-4\right)\le0\)
Ta có : \(\left(x-2\right)^2\)\(.\left(x+1\right).\left(x-4\right)\le0\)
⇔(x+1)(x-4)\(\le\)0
Với (x+1)\(\le\)0 thì (x-4)\(\ge\)0 (loại vì (x+1)>(x-4))
Với (x+1)\(\ge\)0 thì (x-4)\(\le\)0 (chọn)
Ta có: x+1\(\ge\)0 \(\Rightarrow\)x\(\ge\)-1 (1)
x-4\(\le\)0 \(\Rightarrow\)x\(\le\)4 (2)
Từ (1) và (2) suy ra 4\(\ge\)x\(\ge\)-1
Vậy x ϵ {4;3;2;1;0;-1}
Chúc bạn học tốt!
tìm x,y biết:
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
Mà \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x;y\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;\dfrac{1}{10}\right)\)
b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\forall x;y\)
\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}=0\\\left(y^2-\dfrac{1}{4}\right)^{10}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(10;\dfrac{1}{2}\right);\left(10;-\dfrac{1}{2}\right)\right\}\)