Những câu hỏi liên quan
ABC
Xem chi tiết
zZz Cool Kid_new zZz
8 tháng 1 2020 lúc 18:41

Câu hỏi của Trần Thành Phát Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
8 tháng 1 2020 lúc 20:16

\(\sqrt{x^2+\frac{1}{x^2}}=\sqrt{\frac{9}{10}}\cdot\sqrt{\left(x^2+\frac{1}{x^2}\right)\left(\frac{1}{9}+1\right)}\ge\sqrt{\frac{9}{10}}\cdot\left(\frac{x}{3}+\frac{1}{x}\right)\)

Tương tự:\(\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\frac{9}{10}}\left(\frac{y}{3}+\frac{1}{y}\right);\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\frac{9}{10}}\left(\frac{z}{3}+\frac{1}{z}\right)\)

Cộng lại ta có:

\(LHS\ge\sqrt{\frac{9}{10}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{3}\right)\ge\sqrt{\frac{9}{10}}\left(\frac{9}{x+y+z}+\frac{x+y+z}{3}\right)\)

\(=\sqrt{\frac{9}{10}}\cdot\left(\frac{x+y+z}{3}+\frac{1}{3\left(x+y+z\right)}+\frac{26}{3\left(x+y+z\right)}\right)\)

ai đó giúp em đoạn này với.Em cô si xong thấy không đúng ạ :(

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
5 tháng 9 2020 lúc 21:04

Ta sẽ chứng minh bất đẳng thức sau : với các số dương a,b,c,d , ta có : 

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) (*)

\(< =>a^2+b^2+c^2+d^2+2.\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(< =>2.\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)\(< =>\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

\(< =>a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(< =>VT-VP=\left(ad-bc\right)^2\ge0\left(đpcm\right)\)

Sử dụng liên tiếp bất đẳng thức (*) , ta có : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)}^2+\sqrt{z^2+\frac{1}{z^2}}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)(+)

Tiếp tuc ta sẽ chứng minh bất đẳng thức sau : với các số dương a,b,c  :

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)(**)

Sử dụng bất đẳng thức AM-GM : \(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế \(< =>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\left(đpcm\right)\)

Ta có bất đẳng thức (**) đúng nên suy ra được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)(***)

Bất đẳng thức (***) tương đương với \(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}\)

Mà theo đánh giá của AM-GM thì \(\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\ge2\sqrt{\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}}=2\)(****)

Vfa theo giả thiết \(x+y+z\le1< =>\frac{1}{x+y+z}\ge1< =>\frac{80}{\left(x+y+z\right)^2}\ge80\)(*****)

Cộng theo vế hai bất đẳng thức (****) và (*****) ta được : \(\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}\ge2+80=82\) 

Khi đó \(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}\ge82\)(++)

Từ (+) và (++) ta suy ra được : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{82}\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Vậy bài toán đã được hoàn tất chứng minh ! 

Bình luận (0)
 Khách vãng lai đã xóa
thu trang nguyen
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Trần Văn Tú
Xem chi tiết
Nguyễn Võ Anh Nguyên
Xem chi tiết
Hoàng Minh Hoàng
31 tháng 7 2017 lúc 9:47

x^2+1>=2x suy ra 1/x^2+1=y<=1/2x+y=1/x+x+y=1/9(9/x+x+y)<=1/x+1/x+1/y.

A(BT)<=1/9(3/x+3/y+3/z)=1/3(1/x+1/y+1/z)

Mà từ x+y+z=xy+yz+zx suy ra x+y+z=xy+yz+zx>=3

dễ dàng cm bằng phương pháp đánh giá suy ra 1/x+1/y+1/z<3

suy ra A<1/3.3=1(đpcm)

Bình luận (0)
khong có
Xem chi tiết
Nguyen Tuan Dung
Xem chi tiết
Nguyễn Tuấn Hào
Xem chi tiết
Kiệt Nguyễn
11 tháng 10 2020 lúc 16:34

Áp dụng bất đẳng thức AM - GM, ta được: \(2yz+2=x^2+\left(y^2+2yz+z^2\right)=x^2+\left(y+z\right)^2\ge2\sqrt{x^2.\left(y+z\right)^2}=2x\left(y+z\right)\Rightarrow yz+1\ge x\left(y+z\right)\)\(\Rightarrow VT\le\frac{x^2}{x^2+x+x\left(y+z\right)}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}=\frac{x+y+z}{x+y+z+1}+\frac{1}{xyz+3}\)

Nếu \(x+y+z\le2\)thì \(VT\le1-\frac{1}{x+y+z+1}+\frac{1}{xyz+3}\le1-\frac{1}{3}+\frac{1}{3}=1\)Nếu \(x+y+z\ge2\), ta đặt x + y + z = p; xy + yz + zx = q; xyz = r thì áp dụng bất đẳng thức Schur, ta được \(VT\le\frac{p}{p+1}+\frac{1}{\frac{p\left(4q-p^2\right)}{9}+3}=\frac{p}{p+1}+\frac{9}{p^3-4p+27}\)

Khảo sát hàm trên với \(p\in\left[\sqrt{2};2\right]\)ta cũng có \(VT\le1\)

Vậy ta có: \(\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}\le1\)

Đẳng thức xảy ra khi x = y = 1; z = 0

Bình luận (0)
 Khách vãng lai đã xóa
Inequalities
11 tháng 10 2020 lúc 16:37

bài này x,y,z pk không âm

Bình luận (0)
 Khách vãng lai đã xóa
Inequalities
11 tháng 10 2020 lúc 16:49

bài này x,y,z >=0 (tức ko âm) nha, như thế ms có xyz >=0 đc (1 số = ), x,y,z >0 thì ko đc

Bình luận (0)
 Khách vãng lai đã xóa
Trần Thành Phát Nguyễn
Xem chi tiết
Thắng Nguyễn
12 tháng 10 2016 lúc 17:10

mk hơi vội nên sai 1 số lỗi nhỏ bn tự sửa nhé

Bình luận (0)
Thắng Nguyễn
12 tháng 10 2016 lúc 17:08

\(A=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)

Áp dụng Bđt MIncopxki ta có:

\(A\ge\sqrt{\left(x+y+\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2+80}=\sqrt{82}\)

Dấu = khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
Trần Thành Phát Nguyễn
13 tháng 10 2016 lúc 20:33

vì sao từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) mà ra được \(\frac{81}{\left(x+y+z\right)^2}\)

Bình luận (0)