Cho x, y, z > 0 thỏa mãn : xy + yz + xz = 3.
CMR : \(\frac{1}{x^2+y^2+2}+\frac{1}{y^2+z^2+2}+\frac{1}{z^2+x^2+2}\le\frac{3}{4}\)
a) Cho x, y, z thuộc R. Cmr: \(\left(x+y+z\right)^2>=3.\left(xy+yz+zx\right)\)
b) Cho 3 số dương x, y, z thỏa mãn x + y +z = 1. Tìm giá trị nhỏ nhất của biểu thức:
M = \(\frac{5}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\)
Cho các số x, y, z > 0 thỏa mãn x + y + z = 1. Tìm GTLN của biểu thức:
\(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
Bài 4: Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi . CMR:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\) \(\ge\) \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 5: Cho x, y, z dương. CMR:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}>2\)
Bài 6: Cho x, y, z dương thỏa mãn: xy + yz + zx = 1
CMR: \(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\le2\left(x+y+z\right)\)
Cho x,y,z>0 thỏa xy+yz+zx=1.Chứng minh rằng:
\(\Sigma\frac{1}{xy}\ge3+\Sigma\frac{\sqrt{x^2+1}}{x}\)
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
chứng minh rằng:
\(\frac{1}{x^2+yz}+\frac{1}{y^2+zx}+\frac{1}{z^2+xy}\le\frac{x+y+z}{2xyz}\)
Cho x,y,z>0 và x2+y2+z2=1
CMR \(\frac{1}{1+xy}+\frac{1}{1+xz}+\frac{1}{1+yz}\ge\frac{9}{4} \)
a) Cho a,b>0 chứng minh \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\ge\)\(\frac{4}{a+b}\)
b) Cho x,y,z>0 thỏa mãn x+y+z=1 tìm:
GTLN của M = \(\frac{5}{xy+yz+zx}\)+\(\frac{2}{x^2+y^2+z^2}\)