chứng minh rằng 1^2+2+2^2+2^3+....+2^99+2^100=2^101-1
A=1/100^2+1/101^2+1/102^2+…+1/200^2 chứng minh rằng 1/200<A<1/99
Chứng minh rằng 1/200<A<1/99 biết A=1/100^2+1/101^2+1/102^2+…+1/200^2
cho S=1/99-1/100^2-1/101^2-...-1/2013^2
chứng minh rằng : S>1/2013
A=1/100^2+1/101^2+1/102^2+…+1/200^2 chứng minh rằng 1/200<A<1/99 ai nhanh mik sẽ tick cho
Ta có :
1002 > 99 . 100
1012 > 100 . 101
..............
2002 > 199. 200
=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)
=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\) \(\left(1\right)\)
Tương tự ta có :
A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)
=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)
=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)
=> A > \(\frac{1}{200}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)Ta có :
\(\frac{1}{200}< A< \frac{1}{99}\)
=> ĐPCM
chứng minh đẳng thức : 1 +2+ 2 mũ 2 + 2 mũ 3 + ...+ 2 mũ 99 + 2 mũ 100 = 2 mũ 101 -1
Đặt \(A=1+2+2^2+...+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=-1+2^{101}\)
\(\Rightarrow A=2^{101}-1\)
M=1/2*3/4*5/6*....*99/100
N=2/3*4/5*6/7*...*100/101
a, chứng minh rằng: M<N
b, tính M*N
c, chứng minh rằng: M<1/10
B=1/100^2+1/101^2+1/102^2+1/103^2+...+1/199^2. chứng minh 1/100<B<1/99
chứng minh đẳng thức:
1 + 2 + 2^2 + 2^3 +.....+ 2^99 + 2^100 = 2^101 -1
giải hộ mk nha mk cần gấp
Đặt A = 1 + 2 + 22 + 23 + ... + 299 + 2100
2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101
2A - A = (2 + 22 + 23 + 24 + ... + 2100 + 2101) - (1 + 2 + 22 + 23 + ... + 299 + 2100)
A = 2101 - 1 (đpcm)
Đặt A = 1 + 2 + 22 + 23 + ... + 299 + 2100
2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101
2A - A = (2 + 22 + 23 + 24 + ... + 2100 + 2101) - (1 + 2 + 22 + 23 + ... + 299 + 2100)
A = 2101 - 1 (đpcm)
A=1+x+x^2+...+x^99+x^100. Chứng minh rằng A=(x^101-1)/(x-1)