c/m
(x+1)/(x+2)>x/(x+1) ( với x lớn hơn hoặc bằng 0 )
Cho f(x)=1/3(m-1)x³-mx²+(m+2)x-5. Tìm m để a)f'(x) lớn hơn hoặc bằng 0 với mọi x b)f'(x) nhỏ hơn hoặc bằng 0 với mọi x c)f'(x)=0 có 2 nghiệm cùng âm d)f'(x)=0 có nghiệm thỏa mãn x1+2x2=1
cho các số thực x,y thỏa mãn điều kiện x lớn hơn hoặc bằng 0,y lớn hơn hoặc bằng 0 , x+y=1
CMR x/y+1 +y/x+1 lớn hơn 2/3
Tìm GTNN, GTLN của bt sau:
A= \(x-12\sqrt{x}\)(x lớn hơn hoặc bằng 0)
B=\(-x+6\sqrt{x}+2\)(x lớn hơn hoặc bằng 0)
C=\(\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)((x lớn hơn hoặc bằng 0, x khác 9)
D=\(\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)(x lớn hơn hoặc bằng 0, x khác 1)
mk giải 1 bài lm mẩu nha .
+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)
vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)
vậy giá trị nhỏ nhất của \(A\) là \(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)
mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :
\(A=x-12\sqrt{x}\\ =x-12\sqrt{x}+36-36\\ =\left(\sqrt{x}-6\right)^2-36\ge-36\text{ }\forall x\ge0\)
Vậy \(A_{Min}=-36\text{ }khi\text{ }x=36\)
B tương tự
\(C=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\dfrac{8}{\sqrt{x}+3}\)
\(Do\text{ }\sqrt{x}\ge0\forall x\\ \Rightarrow\sqrt{x}+3\ge3\forall x\\ \Rightarrow\dfrac{8}{\sqrt{x}+3}\le\dfrac{8}{3}\forall x\\ \Rightarrow C=1-\dfrac{8}{\sqrt{x}+3}\ge-\dfrac{5}{3}\forall x\)
Vậy \(C_{Min}=-\dfrac{5}{3}\text{ }khi\text{ }x=0\)
D tương tự
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
Rút gọn biểu thức chứa chữ A = (1/√x -1 + 1/√x +1 ) : 1/√x -1 với x lớn hơn hoặc bằng 0 , x khác 1 B = 2√x /√x -5 - x -25√x / 25 -x với lớn hơn hoặc bằng 0 , x khác 25
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
X - 3 căn x + 2 với X lớn hơn hoặc bằng 0 , y lớn hơn hoặc bằng 0
X+5 căn x + 6với X lớn hơn hoặc bằng 0 , y lớn hơn hoặc bằng 0
\(X\sqrt{x}+y\sqrt{y}\)
với X lớn hơn hoặc bằng 0 , y lớn hơn hoặc bằng 0
Đề bài khó hiểu quá. Bạn cần viết lại đề để được hỗ trợ tốt hơn.
Tìm x thuộc Z biết:
a,|x-2| nhỏ hơn hoặc bằng 2
b,|x-3| nhỏ hơn hoặc bằng 0
c,2 lớn hơn hoặc bằng |x-1| nhỏ hơn hoặc bằng 3
d, -1 lớn hơn hoặc bằng |x-2| nhỏ hơn hoặc bằng 2
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)
1. với x, y lớn hơn 0. cm: x/y + y/z lớn hơn hoặc bằng 2
2. với x, y lớn hơn 0. cm: (x+y+z)(1/x + 1/y + 1/z) lớn hơn hoặc bằng 9
3.tính
A= 1/1-x + 1/1+x + 2/1+x^2 + 4/1+x^4 + 8/1+x^8
B=1/x(x+1) + 1/(x+1)(x+2) + ....... + 1/(x+19)(x+20)