Tìm các số tự nhiên x và y thỏa mãn 5^x=y^2 + y + 1
Tìm các số tự nhiên x và y thỏa mãn
5^x = y^2 + y +1
Lời giải:
Nếu $y\vdots 5$ thì $5^x=y^2+y+1$ chia 5 dư 1
$\Rightarrow x=0$
Khi đó: $y^2+y+1=5^0=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0$. Mà $y$ là stn nên $y=0$
Nếu $y$ chia 5 dư 1. Đặt $y=5k+1$. Khi đó:
$y^2+y+1=(5k+1)^2+5k+1+1=25k^2+15k+3$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý -loại)
Nếu $y$ chia 5 dư 2. Đặt $y=5k+2$, Khi đó:
$y^2+y+1=(5k+2)^2+5k+2+1=25k^2+25k+7$ chia 5 dư 2
$\Rightarrow 5^x$ chia 5 dư 2 (vô lý)
Nếu $y$ chia 5 dư 3. Đặt $y=5k+3$, Khi đó:
$y^2+y+1=(5k+3)^2+5k+3+1=25k^2+35k+13$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý)
Nếu $y$ chia 5 dư 4. Đặt $y=5k+4$, Khi đó:
$y^2+y+1=(5k+4)^2+5k+4+1=25k^2+45k+21$ chia 5 dư 1
$\Rightarrow 5^x$ chia 5 dư 1 $\Rightarrow x=0$
$\Rightarrow y^2+y+1=5^x=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0\Rightarrow y=0$ (do $y$ là stn). Mà $y$ chia 5 dư 4 nên ô lý.
Vậy $(x,y)=(0,0)$
1, tìm các số nguyên dương x,y,z thỏa mãn 8x+9y+10z=100 và x+y+z>11
2,tìm x là số nguyên lớn nhất thỏa mãn x< ( √5 +2)^8
3, tìm các số tự nhiên x,y,z thỏa mãn đồng thời (x-1) ³ +y ³ -2z ³ =0 và x+y+x=1
đg cần gấp lắm , help me!!
Tìm các số tự nhiên x, y thỏa mãn: \(5^x-2^y=1\)
Xét trên tập số tự nhiên
- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=2\Rightarrow x=1\)
- Với \(y\ge2\Rightarrow2^y⋮8\)
\(\Rightarrow5^x-1⋮8\)
Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)
\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)
\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)
\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)
Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn
Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)
Tìm các số tự nhiên x,y thỏa mãn \(5^x-2^y=1\)
\(5^x-2^y=1\left(a\right)\left(x;y\in N\right)\)
Ta thấy với \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) thì \(\left(a\right)\) thỏa mãn
\(\left(a\right)\Leftrightarrow5^x-1=2^y\)
Với \(y\ge3\left(y\in N\right)\)
\(\Rightarrow5^x-1=2^y⋮8\left(b\right)\)
- Nếu \(x=2k\left(k\in N\right)\) (x là số chẵn)
\(\Rightarrow5^x-1=25^k-1⋮3\left(25^k\equiv1\left(mod3\right)\Rightarrow25^k-1\equiv0\left(mod3\right)\right)\)
\(\Rightarrow\left(b\right)\) không thỏa mãn
- Nếu \(x=2k+1\left(k\in N\right)\) (x là số lẻ)
\(\Rightarrow5^x-1=5.25^k-1\equiv4\left(mod8\right)\left(5.25^k\equiv5\left(mod8\right)\right)\)
Nên với \(y\ge3\) không tồn tại \(\left(x;y\right)\) thỏa mãn \(\left(a\right)\)
Vậy có đúng 1 cặp nghiệm \(\left(x;y\right)=\left(1;2\right)\) thỏa mãn đề bài
các bn giúp mình giải 1 số bài tập này nhé :
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho n-2
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho 2n -2
-tìm các số nguyên x thỏa mãn x lớn hơn hoặc bằng -21/7 và x bé hơn hoặc bằng 3
-tìm các số tự nhiên x,y thỏa mãn x-1 chia hết cho y , y-1 chia hết cho x
Tìm các số tự nhiên x,y thỏa mãn: 5^x - 2^y = 1
tìm tất cả các số tự nhiên x y (x y khác 0) thỏa mãn
2.x+4/y - 2/x -5/xy = 1
a, có hay không ác số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2014
b, có hay không các số tự nhiên x thỏa mãn x(x+1)(x+2)=2012
c, có hay không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2011
d , có không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2013
Tìm x, y là các số tự nhiên thỏa mãn 10 x y 30 và x ƯCLN 2y 5 3y 2
Do x là UCLN ( 2y + 5 ; 3y + 2 ) nên
2y + 5 chia hết cho x (1)=> 6y + 15 chia hết cho x (3)
3y + 2 chia hết cho x (2)=> 6y + 4 chia hết cho x(4)
Lấy (3) trừ cho (4) ta được 11 chia hết cho x
=> x thuộc Ư(11) mà x > 10
=> x = 11
Lấy (2) trừ (1) ta được y - 3 chia hết cho x hay y - 3 chia hết cho 11
Mà y > 10 và y <30> y -3 > 7 và y - 3 < 27> y - 3 =11 hoặc y - 3 = 22 => y = 14 hoặc y = 25
Xét y = 14 => 2y + 5 = 33 và 3y + 2 =44 ( thỏa mãn )
Xét y = 25 => 2y + 5 = 55 và 3y + 2 = 77 ( thỏa mãn )
Vậy x =11 và y =14 hoặc x = 11 và y =25
Đây là Toán mà