Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kim taehyung
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 20:20

ĐKXĐ: x<>-1

Đặt \(P=\dfrac{6}{x+1}\cdot\dfrac{x-1}{3}\)

\(P=\dfrac{6}{x+1}\cdot\dfrac{x-1}{3}=\dfrac{6\left(x-1\right)}{3\left(x+1\right)}=\dfrac{2\left(x-1\right)}{x+1}=\dfrac{2x-2}{x+1}\)

Để P là số nguyên thì \(2x-2⋮x+1\)

=>\(2x+2-4⋮x+1\)

=>\(-4⋮x+1\)

=>\(x+1\inƯ\left(-4\right)\)

=>\(x+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{0;-2;1;-3;3;-5\right\}\)

tran thanh tam
Xem chi tiết
Hoàng Phúc
2 tháng 10 2016 lúc 16:33

P=n3+4n-5=n3-n+5n-5=n(n2-1)+5(n-1)

=n(n-1)(n+1)+5(n-1)=(n-1)[n(n+1)+5]

=(n-1)(n2+n+5)

Vì n \(\in\) N nên n2+n+5 > 1

Để P là số nguyên tố thì n-1=1=>n=2

Thử lại thấy n=2 thỏa mãn

Vậy n=2

Quyên Phan Võ Tố
21 tháng 12 2016 lúc 21:49

1) a)  x  =  -7 / 44

    b)  x  =  -1 / 8

Nguyễn Thùy Dương
Xem chi tiết
Ftea.me
10 tháng 8 2023 lúc 12:45

để A = 3x + 2/x - 3 nguyên

=>  3x + 2 ⋮ x - 3

=> 3x - 9 + 11 ⋮ x - 3

=> 3(x - 3) + 11 ⋮ x - 3

=> 11 ⋮ x - 3

=> x - 3 thuộc Ư(11)

=> x - 3 thuộc {-1; 1; -11; 11}

=> x  thuộc {2; 4; -8; 14}

Ftea.me am làm đúng rồi. cô tick xanh cho em nhưng lần sau em nhớ thêm đkxđ : \(x\ne\) 3

Anh Quốc
Xem chi tiết
Tuấn Nguyễn
18 tháng 11 2018 lúc 10:38

Điều kiện: \(x\ne2\)

Phân tích tử thức: \(x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)

Phân tích mẫu thức: \(x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)\)

\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)

Ta có: \(P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)

Để P là số nguyên thì \(x-2\inƯ\left(4\right)\)

\(\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)

Bùi Tiến Dũng
19 tháng 12 2018 lúc 18:58

Điều kiện: x\ne2x̸​=2

Phân tích tử thức: x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)x4−16=(x2)2−42=(x2−4)(x2+4)=(x−2)(x+2)(x2+4)

Phân tích mẫu thức: x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)x4−4x3+8x2−16x+16=(x4−4x3+4x2)+(4x2−16x+16)

=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)=x2(x2−4x+4)+4(x2−4x+4)=(x−2)2(x2+4)

Ta có: P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}P=(x−2)2(x2+4)(x−2)(x+2)(x2+4)​=x−2x+2​=x−2(x−2)+4​=1+x−24​

Để P là số nguyên thì x-2\inƯ\left(4\right)x−2∈Ư(4)

\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}⇒x−2∈{−4;−2;−1;1;2;4}

\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}⇒x∈{−2;0;1;3;4;6}

Bruce Lee
Xem chi tiết
Đỗ Lê Tú Linh
16 tháng 4 2016 lúc 19:29

2)\(A=\frac{6x-5}{3x+1}=\frac{6x+2-7}{3x+1}=\frac{2\left(3x+1\right)-7}{3x+1}=2-\frac{7}{3x+1}\)

Do đó, để A nhận giá trị nguyên thì 7 chia hết cho 3x+1 hay (3x+1)EƯ(7)={1;-1;7;-7}

=>3xE{0;-2;6;-8}

=>xE{0;2}

*)Nếu x=0 thì A=2-\(\frac{7}{3\cdot0+1}=2-7=-5\)

*)Nếu x=2 thì A=2-\(\frac{7}{3\cdot2+1}=2-1=1\)

=>Để A có GTNN thì x=0

Vậy để A nhận giá trị nguyên thì xE{0;2}

Để A có GTNN là -5 thì x=0

Miuuu
Xem chi tiết
vu minh hang
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 5 2016 lúc 10:08

a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))

Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có : 

\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)

b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))

Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)

Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có : 

\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

Ngọc Hà
Xem chi tiết
Đức Nguyễn Ngọc
12 tháng 6 2016 lúc 9:13

Ta có: A = \(\frac{x+1}{x-2}=\frac{\left(x-2\right)+3}{x-2}\) \(=\frac{x-2}{x-2}+\frac{3}{x-2}\)

                                                           \(=1+\frac{3}{x-2}\)

Để A nguyên thì 3/x-2 nguyên

<=>  (x - 2) \(\in\) Ư(3)

=>  (x - 2) \(\in\) {-3;-1;1;3}

=>  x \(\in\) {-1;1;3;5}

Nguyễn Ngọc Minh Văn
Xem chi tiết