Cho ΔABC có A\(\left(\frac{-1}{4};1\right)\), B\(\left(0;3\right)\), C\(\left(3;1\right)\).
a) G là trọng tâm của ΔABC. Tính độ dài đoạn thẳng AG.
b) Tìm tọa độ điểm D có hoành độ dương sao cho ΔABD vuông cân tại B.
Gọi a, b, c là độ dài 3 cạnh của ΔABC. Biết \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=8\). C/m ΔABC đều.
Ta có:
(1 + b/a)(1 + c/b)(1 + a/c) = 8
<=> (a + b)/a.(b + c)/b.(c + a)/c = 8
<=> (a + b)(b + c)(c + a) = 8abc
Áp dụng bất đẳng thức Cauchy cho các số dương a, b, c ta được:
a + b ≥ 2√(ab)
b + c ≥ 2√(bc)
c + a ≥ 2√(ca)
=> (a + b)(b + c)(c + a) ≥ 8√(a^2.b^2.c^2) = 8|abc| = 8abc (vì a, b,c > 0)
Dấu "=" xảy ra <=> a = b; b = c; c = a <=> a = b = c <=> ΔABC đều
https://olm.vn/hoi-dap/detail/2293581520.html cậu tham khảo nhé !
goi a,b,c la 3 canh cua ΔABC
biet \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\)8
cm ΔABC deu
Ta thấy: a;b;c là 3 cạnh của 1 tam giác nên a;b;c >0
Từ giả thiết, ta có: \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)(*)
Áp dụng BĐT AM-GM (với a;b;c > 0)\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)(**)
Dấu "=" xảy ra <=> a=b=c
Từ (*) và (**) => \(a=b=c\) tức là \(\Delta\)ABC đều (đpcm).
Cho ΔABC có BC = a. Trên cạnh AB lấy điểm M sao cho MB =\(\frac{1}{4}\)AB. Trên cạnh AC lấy điểm N sao cho NC = \(\frac{1}{4}\)AC. Tính MN theo a .
Ai giúp e vs ạ, 3 **** luôn nak
Cho ΔABC cân tại A có Â=80 độ.Số đo góc C bằng
A.30 độ
B.40 độ
C.50 độ
D.70 độ
Các biểu thức sau,biểu thức nào là đơn thức
A.\(10x^2y+2\)
B.\(2\left(x+y\right)\)
C.\(2x\left(-\dfrac{1}{3}\right)y^2x\)
D.\(-4xy^2\)
ΔABC cân tại A có góc BÂC bằng 70 độ thì số đo mỗi góc ở đáy của tam giác cân là?
A.110 độ
B.70 đọ
C.60 độ
B.55 độ
ta có:\(ab+bc+ac=abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Áp dụng BĐT :\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)ta có:
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+c\right)+\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right).\)\(\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\right)=\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right).\)
Tương tự ta có :\(\frac{1}{a+2b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right);\frac{1}{a+b+2c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right).\)
Cộng ba BĐT lại ta có:
\(Q\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}.\)
Đẳng thức xảy ra khi \(a=b=c=3\).Max=\(\frac{1}{4}\)
Bài 1:
a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?
b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc: Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số A đã cho?
Bài 2: Tính giá trị các biểu thức sau bằng cách hợp lý:
\(A=2880:\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)
\(B=\frac{\frac{-2}{13}-\frac{2}{15}+\frac{2}{19}}{\frac{4}{13}+\frac{4}{15}-\frac{4}{19}}\)
\(C=\frac{2}{143}-\frac{6}{187}-\frac{4}{357}-\frac{6}{91}\)
\(D=\frac{\left(\frac{7}{15}+\frac{1414}{4545}+\frac{34}{153}\right):3\frac{3}{23}-\frac{3}{11}\left(2\frac{2}{3}-1,75\right)}{\left(\frac{3}{7}-0,25\right)^2:\left(\frac{3}{28}-\frac{1}{24}\right)}\)
Bài 3: Tìm x biết :
\(\frac{\left(27\frac{5}{19}-26\frac{4}{13}\right)\left(\frac{3}{4}+\frac{19}{59}-\frac{3}{118}\right)}{\left(\frac{3}{4}+x\right)\frac{27}{33}}=\frac{\frac{1}{13.16}+\frac{1}{14.17}}{\frac{1}{13.15}+\frac{1}{14.16}+\frac{1}{15.17}}\)
a) số chia cho 9 dư 5 có dạng 9a+5
ta có 9a+5 chia 7 dư 2a+5
theo đề bài ta lại có 2a+5 chia 7 dư 4 nên có dạng 2a+5=7b+4 =>a=(7b-1)/2
số cần tìm luc này có dạng 63b/2+1/2 chia 5 du 3b/2+1/2
như vậy ta cần tìm số b nhỏ nhất sao cho 3b/2+1/2 chia 5 dư 3 hay số 3b/2-5/2 chia hết cho 5
=>3b/10-1/2 là số nguyên
=>3b-5 chia hết cho 10
=>b=5
=>số cần tìm là 63*5/2+1/2=158
Bài 1:
a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?
b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc : Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số A đã cho?
Bài 2: Tính giá trị các biểu thức sau bằng cách hợp lý:
\(A=2880:\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)
\(B=\frac{\frac{-2}{13}-\frac{2}{15}+\frac{2}{19}}{\frac{4}{13}+\frac{4}{15}+\frac{4}{19}}\)
\(C=\frac{2}{143}-\frac{6}{187}-\frac{4}{357}-\frac{6}{91}\)
\(D=\frac{\left(\frac{7}{15}+\frac{1414}{4545}+\frac{34}{135}\right):3\frac{3}{23}-\frac{3}{11}\left(2\frac{2}{3}-1,75\right)}{\left(\frac{3}{7}-0,25\right)^2:\left(\frac{3}{28}-\frac{1}{24}\right)}\)
Bài 3: Tìm x biết :
\(\frac{\left(27\frac{5}{19}-26\frac{4}{13}\right)\left(\frac{3}{4}+\frac{19}{59}-\frac{3}{118}\right)}{\left(\frac{3}{4}+x\right)\frac{27}{33}}=\frac{\frac{1}{13.16}+\frac{1}{14.17}}{\frac{1}{13.15}+\frac{1}{14.16}+\frac{1}{15.17}}\)
Bài 1 :
a. Gọi số cần tìm là a.
Ta có: a : 5 dư 3
a : 7 dư 4 => 2a -1 chia hết cho 5; 7; 9 mà
a : 9 dư 5 a nhỏ nhất => 2a - 1 nhỏ nhất
=> 2a - 1 \(\in\) BCNN\(\left(5,7,9\right)\) = 315
=> 2a = 316 => a = 158
Vậy số tự nhiên cần tìm là 158
Bài 2:
A = 2880 : \(\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)
A = 2880 : \(\left\{\left[119-7^2\right].2-25.4\right\}\)
A = 2880 : \(\left\{\left[119-49\right].2-100\right\}\)
A = 2880 : \(\left\{70.2-100\right\}\)
A = 2880 : \(\left\{140-100\right\}\)
A = 2880 : 40
A = 72
B = \(\frac{\frac{-2}{13}-\frac{3}{15}+\frac{3}{10}}{\frac{4}{13}+\frac{4}{15}+\frac{4}{10}}\)
B = \(\frac{\frac{-23}{65}+\frac{3}{10}}{\frac{112}{195}+\frac{4}{10}}\)
B = \(\frac{-3}{20}\)
NHƯ VẬY MÀ BẠN BẢO TÍNH HỢP LÍ SAO TOÀN NHỮNG PHÉP TÍNH RA SỐ TO KHỦNG MÌNH THẤY CHẲNG HỌP LÍ TÍ NÀO CẢ NÊN MÌNH KHÔNG LÀM BÀI NÀY NỮA NHƯNG NHỚ TÍCH CHO MÌNH NHA
a) Tìm m để pt \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\) có 4 nghiệm thỏa: \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
b) Tìm các số \(a,b,c\ge0\)sao cho: \(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
ΔABC có \(B\left(-1;\sqrt{3}-4\right)\) và \(C\left(3;\sqrt{3}+8\right)\) và AB = 3AC
Tính giá trị lớn nhất của diện tích tam giác ABC
cho a,b,c thuộc N, a,b,c >1
CMR: Trong 3 BDT sau có ít nhất 1 BDT sau sai.
\(a\left(1-b\right)>\frac{1}{4},b\left(1-c\right)>\frac{1}{4},c\left(1-a\right)>\frac{1}{4}\)