T ÌM GIÁ trị của x thoả mãn: |2x+3|+|2x-1|=\(\frac{8}{3\left(x+1\right)^2+2}\)
cho bt \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\left[1:\left(1-\frac{1}{x}+\frac{1}{4x^2}\right)\right]\)
a, rút gọn bt
b, tính giá trị bt khi X thoả mãn trị tuyệt đối của x + 1 = 3
ai nhanh tick cho nè mấy bạn siêu toán 8
1. Giá trị nhỏ nhất của \(3x^2+2x+\frac{4}{3}\)
2.Giá trị của \(2\left(x^3-y^3\right)-3\left(x+y\right)^2\) biết \(x-y=2\)
3. Giá trị của x thoả mãn \(\left(2x+1\right)^3-4x^2\left(2x-3\right)=5\)
1) \(3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+1=3\left(x+\frac{1}{3}\right)^2+1\ge1\Rightarrow Min=1\Leftrightarrow x=-\frac{1}{3}\)
2) \(2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2-2xy+y^2+3xy\right)-3\left(x^2-2xy+y^2+4xy\right)=\left(x-y\right)^2\left(12xy-12xy\right)=0\)
3) đặt \(2x-1=t\Rightarrow x^2=\frac{t+1}{2}^2\Leftrightarrow\left(t+2\right)^3-4\frac{t+1}{2}^2\left(t-2\right)-5=0\Leftrightarrow\left(t+2\right)^3-\left(t+1\right)^2\left(t-2\right)-5=0\)\(\Leftrightarrow t^3+6t^2+12t+8-t^3-2t^2+t+2t^2+4t+2=0\Leftrightarrow6t^2+16t+10=0\Leftrightarrow\left(t+1\right)\left(6t+10\right)=0\)
=> t=-1 hoặc t=-10/6 \(\Leftrightarrow2x-1=-1\Leftrightarrow x=0\) hoặc \(2x-1=-\frac{10}{6}\Leftrightarrow x=-\frac{1}{3}\)
Câu 22 Giá trị của x thoả mãn 2x(x – 3) + 5(x – 3) = 0 là
A. 0
B.- \(\dfrac{5}{2}\)
C. 3 hoặc -\(\dfrac{5}{2}\)
câu 23 Giá trị của x thoả mãn (10x + 9).x – (5x – 1)(2x + 3) = 8 là:
A. 1,5
B. 1,25
C. –1,25
D. 3
Câu 24 Giá trị của x thỏa mãn 2x( x + 3 ) + 2( x + 3 ) = 0 là?
A. x = -3 hoặc x =1
B. x =3 hoặc x = -1
C. x = -3 hoặc x = -1 5
D. x =1 hoặc x = 3 Câu
25 Giá trị của x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15 là :
A. –1,5
B. –2,5
C. –3,5
D. –4,5
Câu 26 Giá trị của x thoả mãn (x + 3)3 – x(3x+1)2 + (2x + 1)(4x2 – 2x + 1) = 28 là: A. 0
B. -8 \(\dfrac{2}{3}\)
C. 0 hoặc 8\(\dfrac{2}{3}\)
D. 0 hoặc -8\(\dfrac{2}{3}\)
Câu 28 Tứ giác ABCD có 𝐴̂ = 1200 ; 𝐵̂ = 800 ; 𝐶̂ = 1000 thì:
A. 𝐷̂ = 600
B. 𝐷̂ = 900
C. 𝐷̂ = 400
D. 𝐷̂ = 1000
Câu 29 Cho ΔABC có I, K lần lượt là trung điểm của AB và AC Biết BC = 20cm. Tacó:
A. IK = 40 cm.
B. IK = 10 cm.
C. IK=5 cm.
D. IK= 15 cm.
\(22,C\\ 23,C\\ 24,Sai.hết\\ 25,C\\ 28,A\\ 29,B\)
Biết x=a thoả mãn phương trình \(5\sqrt{\dfrac{2x+1}{4}}-\dfrac{1}{5}\sqrt{\dfrac{25\left(x+\dfrac{1}{2}\right)}{8}}=\dfrac{3}{2}\), khi đó giá trị của biểu thức 1-36a bằng bao nhiêu?
\(PT\Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\sqrt{\dfrac{\dfrac{2x+1}{2}}{2}}=\dfrac{3}{2}\\ \Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\dfrac{1}{2}\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow2\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow\sqrt{2x+1}=\dfrac{3}{4}\\ \Leftrightarrow2x+1=\dfrac{9}{16}\\ \Leftrightarrow2x=-\dfrac{7}{16}\\ \Leftrightarrow x=-\dfrac{7}{32}\\ \Leftrightarrow a=-\dfrac{7}{32}\\ \Leftrightarrow1-36a=1+36\cdot\dfrac{7}{32}=...\)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
\(P=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\frac{1}{x}-\frac{2}{x^2}\right),vớix\ne0;x\ne2\)
1) Rút gọn P
2) Tìm giá trị nguyên của x để biểu thức A=2.P nhận giá trị nguyên
Cho biểu thức :
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a,Tìm x giá trị của A được xác định. Rút gọn biểu thức A
b, Tìm giá trị nguyên của x để A nhận giá rị nguyên
Cho các số dương x, y thoả mãn x + y = 1. Tìm giá trị nhỏ nhất của\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\)
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
Cho mình hỏi bạn Nguyễn Huy Tú, hãy giải thích cho mình hiểu về bất đẳng thức Cauchy schawarz (Định lý, chứng minh,..). Đây là lần đầu tiên mình được nghe tên về bất đẳng thức này nên mong bạn giải thích dễ hiểu. Chúc bạn ngày một thành công hơn trong con đường học vấn của mình !
Q= \(\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\)) \(\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
a) Rút gọn Q ;
b) Tìm các giá trị nguyên của x để Q có giá trị nguyên.
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right).\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
\(\Leftrightarrow Q=\left(\frac{x\left(2-x\right)}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right).\frac{2+x\left(1-x\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{-x\left(x-2\right)^2-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{2+x-x^2}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2-4x+4\right)-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2+4\right)}{2\left(x^2+4\right)}.\frac{x+1}{x^2}\)
\(\Leftrightarrow Q=\frac{x+1}{2x}\)
b) Để \(Q\inℤ\)
\(\Leftrightarrow x+1⋮2x\)
\(\Leftrightarrow2\left(x+1\right)⋮2x\)
\(\Leftrightarrow2x+2⋮2x\)
\(\Leftrightarrow2⋮2x\)
\(\Leftrightarrow2x\inƯ\left(2\right)\)
\(\Leftrightarrow2x\in\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{\pm\frac{1}{2};\pm1\right\}\)
Mà \(x\inℤ\)
Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)