Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trieu tu Lam
Xem chi tiết
Huyền Nguyễn Khánh
Xem chi tiết
Kiều Oanh
1 tháng 1 2016 lúc 10:34

3x²y²z² = x³y³ y³z³ z³x³ 
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3

hee???
Xem chi tiết
Thanh Hoàng Thanh
20 tháng 12 2021 lúc 20:34

1) A. 999.

2) C. 9.

Trúc Giang
20 tháng 12 2021 lúc 20:35

1: A

2: C

Lihnn_xj
20 tháng 12 2021 lúc 20:36

Câu 1: A

Câu 2: C

no name
Xem chi tiết
alibaba nguyễn
23 tháng 11 2016 lúc 23:43

Mình sửa lại đề cho đúng nhé

\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)

Thế vô M ta được

alibaba nguyễn
23 tháng 11 2016 lúc 23:46

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)

Nguyễn Tiến Đạt
12 tháng 12 2017 lúc 21:17

\(_{\hept{\begin{cases}3x-y=3z\left(1\right)\\\\2x+y=7z\end{cases}\Rightarrow}\left(3x-y\right)+\left(2x+y\right)=10z}\)

\(\Leftrightarrow\)5x=10z\(\Leftrightarrow x=2z\)

thay x=2z vào (1) ta được :6z+y=3z\(\Rightarrow y=6z-3z=3z\)

thay y=3z,x=2z vào biểu thức M=\(\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8}{13}\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2022 lúc 19:32

\(N=3x^4+3x^2y^2+x^2y^2+y^4+2y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+y^2\right)+2y^2\)

\(=3x^2+3y^2=3\)

Linh Ngoc
Xem chi tiết
Nguyễn Trọng Hải Đăng
Xem chi tiết
Seu Vuon
22 tháng 12 2014 lúc 20:46

\(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\Rightarrow x^2-y^2-y^2-xy=0\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)-y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x-2y=0\)\(\left(x+y\ne0\right)\)

\(\Rightarrow x=2y\)

Thay vào A tính đc giá trị của A

Sakura Kinomoto
Xem chi tiết
_ɦყυ_
10 tháng 11 2017 lúc 23:29

Ta có: x2+y=y2+x

=>x2+y-y2+x=0

=>(x2-y2)-(x-y)=0

=>(x-y)(x+y)-(x-y)=0

=>(x-y)(x+y-1)=0

=>x-y=0 hoặc x+y-1=0

=>x+y=1(TH1 loại do x khác y)

ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)

=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2

=>A=x2-xy+y2+3x3y+3xy3+6x2y2

=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)

=>A=1-3xy+3x2y+3xy2

=>A=1+3xy(-1+a+b)

=>A=1+3xy(-1+1)

=>A=1+3xy.0

=>A=1

Vậy A=1 khi x2+y=y2+x và x khác y.

Lê Nhật Minh
4 tháng 11 2019 lúc 22:11

Lê Đức Huy chép sai đề cau đầu kìa!

Khách vãng lai đã xóa
Đỗ Đức Mạnh
Xem chi tiết
Tiến_Về_Phía_Trước
2 tháng 12 2019 lúc 20:50

ta có: \(\frac{3x+y}{x+2y}=2\Leftrightarrow3x+y=2x+4y\Leftrightarrow3x-2x=4y-y\Leftrightarrow x=3y.\)

thay x = 3y vào A, ta được: \(\frac{\left(3y\right)^2-y^2}{\left(3y\right)^2+y^2}=\frac{9y^2-y^2}{9y^2+y^2}=\frac{\left(9-1\right)y^2}{\left(9+1\right)y^2}=\frac{8y^2}{10y^2}=\frac{4}{5}\)

Học tốt nhé ^3^

Khách vãng lai đã xóa
Đỗ Đức Mạnh
2 tháng 12 2019 lúc 20:57

@Tiến_Về_Phía_Trước Thanks nhiều !

Khách vãng lai đã xóa